Bivalve Hatchery: An Outline of Maintenance Senses and Vigilance

Seawater Source

- Ambient vs well
 - o Algal use vs larval use
- Watershed- vigilance
- Intake location & maintenance (PVC is cheap compared to failed broods)
 - o Redundant vs annual replacement

Filtration

- Primary
 - Sand
 - Annual maintenance
 - Regular disinfection-bleach
 - Tough to keep clean
 - Tank settlement/storage
 - Clean regularly
 - Dual for daily use is best
- Secondary
 - o Cartridge
 - Expensive
 - Reuse
 - Freshwater soak
 - Watch bleach use
 - Polyester felt bag
 - Washing machine reuse
 - Watch wear & tear
- Tertiary
 - Activated carbon
 - Helps remove organics
 - Change media and keep clean
 - Foam fractionating helps first
 - Ozone-dry air is critical
 - o Ultraviolet light
 - Maintenance
 - Quartz sheath cleaning
 - Bulb replacement-annual?
- Air
 - o HEPA intake filters
 - o Algal
 - Bacterial filters
 - Expensive but reusable (autoclavable)

Maintenance

- Cleaning
 - Organic cleansers
 - Bleach (10ml/ L freshwater)
 - Thorough rinsing
- Tanks-daily
- Screens & tools-daily
- Seawater hoses-weekly
 - Keep off floor
 - o Overnight bleach soak & rinse
- Plumbing
 - Design for easy drainage
 - Overnight freshwater soak-weekly
 - Bleach treatment & flushing-weekly?
 - Watch for blue-green algae growth

Management

Observation is critical

- Algal growth
 - Color vs luster
 - Mucilage-older cultures
 - Contamination
 - Bacterial
- Larval growth
 - Wide size range
 - More food
 - Mid-brood screening
 - Runt riddance- plus & minus
 - No growth
 - Toxicity-blower story
 - Heavy rainfall or river discharge
 - o High organics-foaming of raw water
 - High COD
 - Humic and Tannic Acids-brown water
 - Acidification
 - Aragonite saturation
 - ∘ pH
 - o alkalinity
 - o hardness

- Bacterial contamination
 - O Vibriosis
 Base
 - Bag culture systems
 - Tank bottoms of affected larvae
 - Broodstock in flow of contaminated water

- Areas with high humidity in the hatchery
- Wet areas that have high air flow air coolers and condensation
- Thio-sulfate concentrate that incubates for >1-2 days
- Bacterial monitoring and management
- o Brood stock source, condition and management
- o Larval and juvenile handling and management
- Micro-algal food culture management
 - Clean stock cultures
 - Uncontaminated water
 - Clean techniques
- Water source(s), quality and management

Measured parameter	Approximate recommended range
Rearing water temperature	Depends on species reared.
рН	7.8 to 8.4 units
Salinity	Depends on species reared
Dissolved oxygen	> 5.0 mg/L, < 5% over saturation
Oxidation reduction potential (ORP)	150-250
Nitrogen cycle	Ammonia: Wildly variable; check PAN database for specific organism: 1% of LC50 for target species may be safe. 0.1ppm generally safe. <i>Nitrite:</i> Wildly variable; check PAN database for specific organism: 1% of the LC50 for target species should be relatively safe2 ppm should generally be safe. <i>Nitrate:</i> Wildly variable; check PAN database for specific organism: Canadian guidelines = 16ppm in SW
Copper	None detectible
Hypochlorite	None detectible
Alkalinity	110-140; few adverse consequences if higher than ca 200 ppmCaCO3. Also measured as dKh (norm 6-7; tolerable to 11) and meq/I (2.1-2.5 = norm)
Total dissolved gas saturation	< 5% greater than saturation

Source: Ralph Elston

Adding bicarbonate (HCO₃-) increases [H⁺] and decreases pH

Adding carbonate (CO_{3²⁻)} consumes [H⁺] and increases pH

Sodium carbonate (soda ash) may be added to increase alkalinity, and also raises pH

Sodium bi-carbonate (baking soda) may then be needed to reduce pH and further increases alkalinity