

Results of Growout Production Trials

Leslie Sturmer, Bill White, Shirley Baker University of Florida, Institute of Food & Agricultural Sciences John Scarpa, Harbor Branch Oceanographic Institute at FAU

Presented at Workshop for Florida Hatcheries December 2011

FLORIDA ATLANTIC UNIVERSITY

Why improve upon a good thing?

Increasing unreliable production

Growers accept 50-70% survival rates

Increasing summer crop mortalities

High water temperatures and other environmental stressors during prolonged summer months

Need to increase production efficiency and costellectiveness

- Clam prices stagnant as costs increase

1812

Why selectively breed hard clams?

- Need a heat tolerant clam for Florida
 - Northern quahogs, Mercenaria mercenaria, are "living on the edge"
 - Near southern limit of their natural distribution
 - Summer water temperatures in growing areas regularly exceed 90°F
 - Temperature related mortalities
 observed in lab and field

Improvement of Cultured Clam Stocks through Hybridization

- Hybridization is a common breeding technique
 Used in commercial agriculture and finfish aquaculture
- Hybrids have superior traits to either parent species
 For example, improved growth or environmental resistance
- The use of clam hybridization for "mariculture" potential was examined by Winston Menzel at Florida State University in the 1960-70s
 - Showed hybrids had improved growth, shelf life
 - Little data reported on merit of hybrids for improved survival
- This project allows for a rigorous examination of clam hybridization
 - To improve production
 - To assure product quality

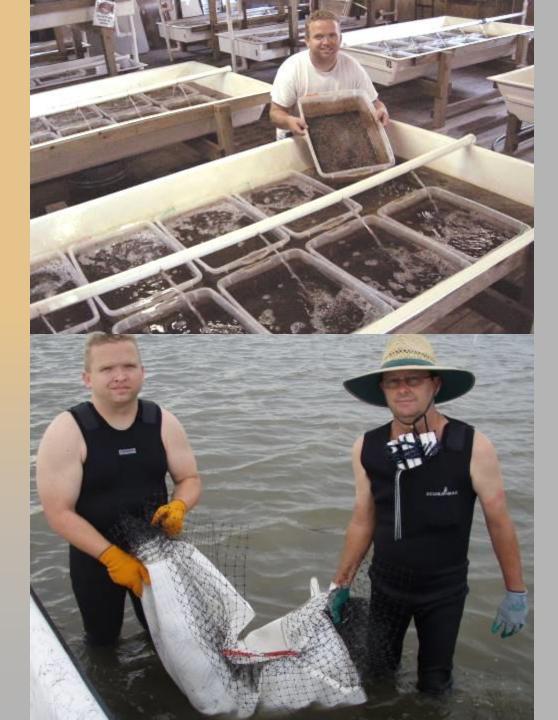
Clam Species

- The northern hard clam supports fisheries and aquaculture industries along Atlantic coast from MA to FL
- The southern quahog found from NC to Caribbean, recreationally fished in FL
 - May have production traits for resisting environmental stressors
 - Not cultured because of their tendency to gape in refrigerated storage
- Mercenaria species are normally separated by environmental tolerances, but readily hybridize where they do cooccur or under hatchery conditions

Northern hard clam Mercenaria mercenaria notata

Southern quahog Mercenaria campechiensis

Hatchery Production


- Northern hard clams obtained from a Florida hatchery
- Southern quahogs obtained from the wild (Sarasota), where highly pure populations are known to exist
- Single parent crosses utilized
- Multiple spawns accomplished with different sets of parents, October-December, 2007
- Stock verification by allozyme method
 - Arnold and Geiger, FWC FWRI

Nursing Hybrid Seed

- Standard hard clam protocols used
- Land-based nursing
 - Downwellers
 - March-June 2008
 - Cedar Key, FL
- Field nursing
 - Bottom bags, 4 mm
 - June-September 2008
 - Cedar Key, FL

Nursing Hybrid Seed

- Growth differences
 negligible
- Survival rates not statistical different
- About 600,000 seed from three families nursed for growout evaluation

Stock	Survival (%) Average <u>+</u> SD
M x M	72.9 <u>+</u> 11.5
MxC	82.4 <u>+</u> 16.9
СхМ	79.5 <u>+</u> 4.6
C x C	86.1 <u>+</u> 4.9

$M \times M$ $(\mathcal{P} \times \mathcal{O})$

MxC

Growout Trials Stock Comparison

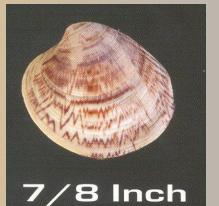
- Replicated plants -Parental stocks and reciprocal crosses from 3 families
 - 146K seed
 - Cedar Key, FLSept 2008-Sept 2009
- Standard planting procedures
 - Bottom bags, 9 mm
 - Net coated and covered with wire
 - Stocked at 1150/bag (72/ft²)

Comparison of Production Characteristics

- Sampling every 4 months and at harvest (12 months)
- Growth SL, SW, total and dry meat weight

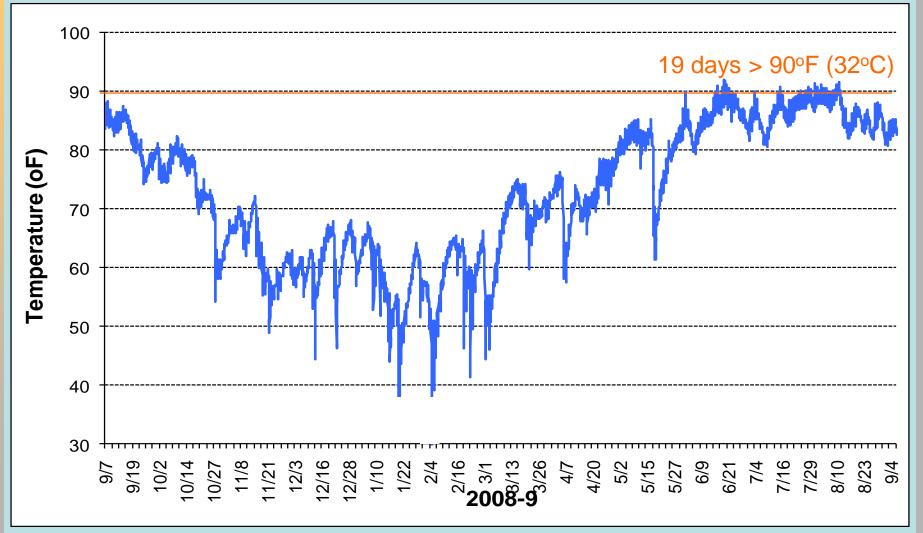
Survival

- Condition index measure of degree of fattening or nutritive status
- Histology determine gonadal stage and reproductive potential



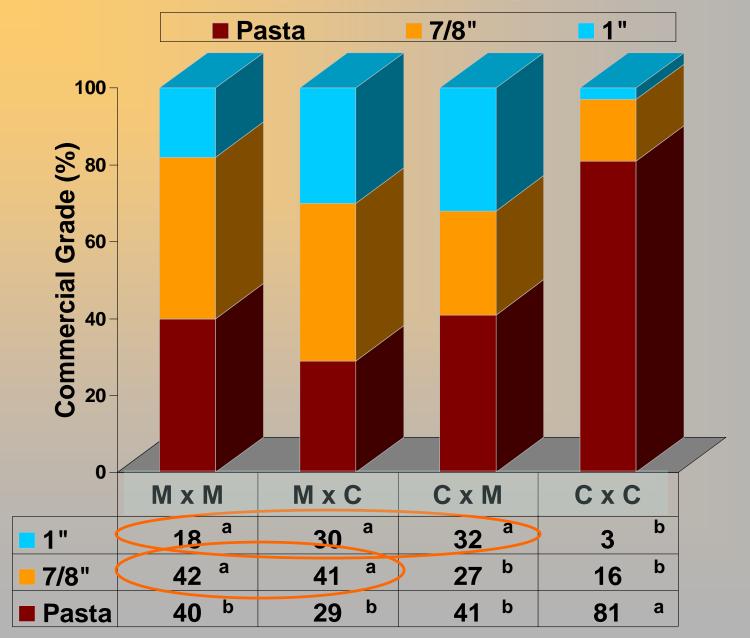
Commercial Market Sizes

Littleneck



Common Name	Shell Width/ Hinge Size (inches)	Number per Pound
Littleneck	1"	10-13
7/8 inch	7/8"	14-18
Pasta	3/4"	18-25

Water Temperature (°F) Dog Island Lease Area, Cedar Key September 2008- September 2009

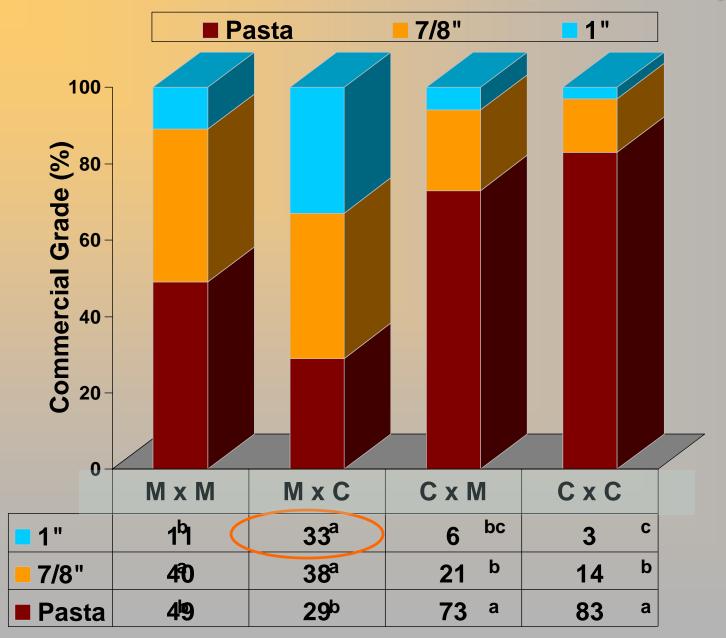

Water temperature measured every 30 minutes with YSI 6600 data sonde

Harvest Results (12 months)–All Families Average <u>+</u> Standard Deviation

Stock	Shell Width (mm)	Total Weight (g)	Dry Meat Wt. (g)	Survival (%)	Production (lbs/bag)
МхМ	23.1	26.8	0.59	93.3	62.8
	<u>+</u> 1.2 ^b	<u>+</u> 3.7 ª	<u>+</u> 0.09 ^{bc}	<u>+</u> 15.4 ª	<u>+</u> 9.6 ª
MxC	24.3	30.2	0.73	99.5	76.1
	<u>+</u> 0.8 ^a	<u>+</u> 2.7 ª	<u>+</u> 0.08 ª	<u>+</u> 8.3 ª	<u>+</u> 8.2 ª
СхМ	23.3	27.5	0.68	90.9	67.2
	<u>+</u> 3.1 ^{ab}	<u>+</u> 9.1 ª	<u>+</u> 0.20 ^{ab}	<u>+</u> 23.5 ^{ab}	<u>+</u> 33.0 ª
CxC	20.4	17.3	0.52	72.3	32.5
	<u>+</u> 1.3 °	<u>+</u> 3.0 ^b	<u>+</u> 0.10 °	<u>+</u> 25.3 ^b	+ 13.9 b

<u>Note</u>: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$. Tukey's test groupings are displayed

Harvest Results (12 months) – All Families

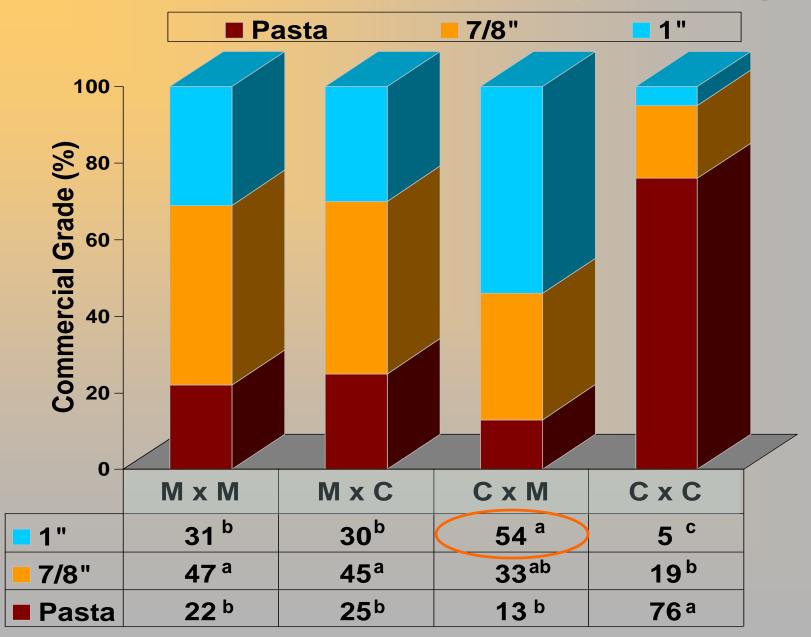


Harvest Results (12 months) – Family A Average <u>+</u> Standard Deviation

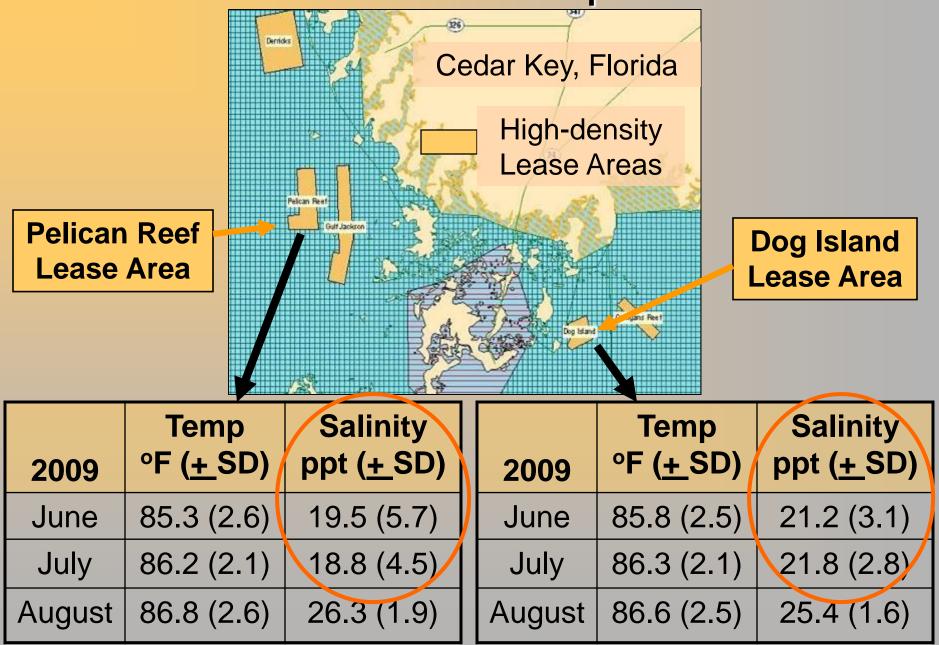
Stock	Shell Width (mm)	Total Weight (g)	Dry Meat Wt. (g)	Survival (%)	Production (lbs/bag)
МхМ	22.6	25.8	0.58	81.8	53.0
	<u>+</u> 1.2 ^b	<u>+</u> 3.6 ^b	<u>+</u> 0.08 ^b	<u>+</u> 11.3 ^{ab}	<u>+</u> 6.6 ^b
MxC	24.5	31.0	0.76	96.8	75.8
	<u>+</u> 0.7 ^a	<u>+</u> 2.2 ^a	<u>+</u> 0.05 ^a	<u>+</u> 9.9ª	<u>+</u> 5.4 ^a
СхМ	20.7	19.4	0.56	68.4	34.4
	<u>+</u> 2.2 ^{bc}	<u>+</u> 5.6 °	+ 0.13 ab	<u>+</u> 7.6 ^b	<u>+</u> 13.0 °
CxC	20.1	16.5	0.50	72.5	32.1
	<u>+</u> 1.5 °	<u>+</u> 3.2 °	<u>+</u> 0.10 ^b	<u>+</u> 26.7 ^{ab}	<u>+</u> 16.3 °

<u>Note</u>: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$. Tukey's test groupings are displayed.

Harvest Results (12 months) – Family A



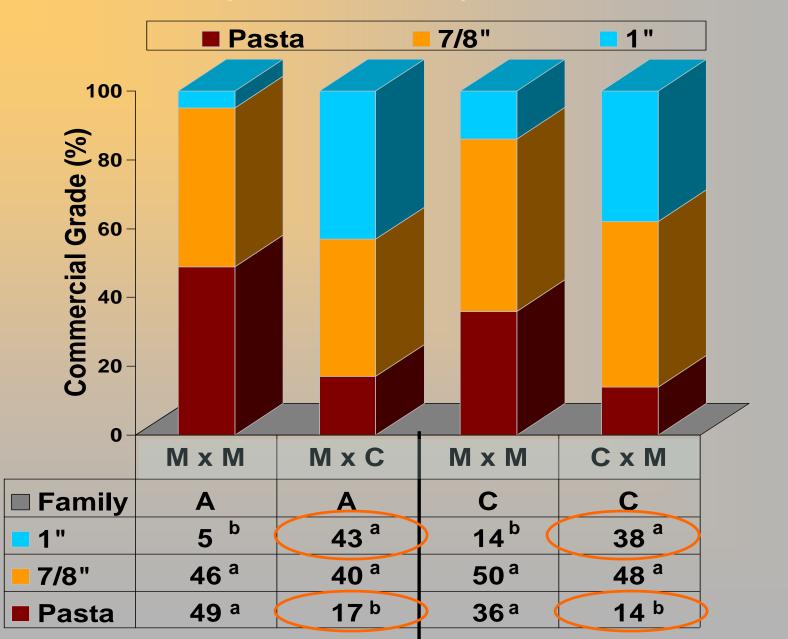
Harvest Results (12 months) – Family C Average <u>+</u> Standard Deviation


Stock	Shell Width (mm)	Total Weight (g)	Dry Meat Wt. (g)	Survival (%)	Production (lbs/bag)
МхМ	24.1	29.8	0.67	92.9	70.1
	<u>+</u> 0.6 ^{bc}	<u>+</u> 1.7 ^b	<u>+</u> 0.09 ^b	<u>+</u> 3.0 ª	<u>+</u> 3.3 ^b
MxC	24.3	30.5	0.77	104.1	80.4
	<u>+</u> 0.7 ^{ab}	<u>+</u> 2.3 ^{ab}	<u>+</u> 0.03 ^{ab}	<u>+</u> 6.8 ª	<u>+</u> 7.7 ^b
СхМ	25.6	34.4	0.89	<mark>110.2</mark>	95.3
	<u>+</u> 1.3 ª	+ 4.4 ^a	<u>+</u> 0.06 ª	<u>+</u> 10.9 ª	<u>+</u> 7.0 ^a
СхС	21.0	18.4	0.60	59.0	28.1
	<u>+</u> 1.3 °	<u>+</u> 3.3 °	<u>+</u> 0.11 ^b	<u>+</u> 20.9 ^b	<u>+</u> 12.8 °

<u>Note</u>: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$. Tukey's test groupings are displayed.

Harvest Results (12 months) – Family C

Growers Site Comparisons



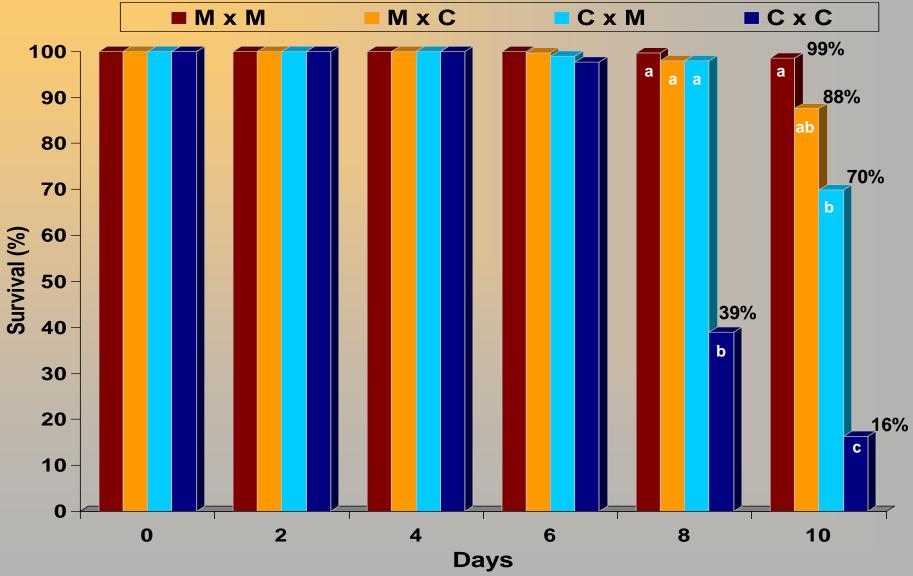
Harvest Results(12 months) – Grower A Average <u>+</u> Standard Deviation

Stock	Shell Width (mm)	Shell Length (mm)	Total Weight (g)	Survival (%)	Production (lbs/bag)
M x M	21.9	41.9	22.7	52.2	31.3
(Family A)	<u>+</u> 0.2 ^b	<u>+ 0.5 ^b</u>	<u>+ 0.7 ^b</u>	+ 8.5 ^b	<u>+</u> 5.0 ^b
M x C	25.7	46.9	34.5	90.2	82.0
(Family A)	<u>+</u> 0.9 ª	<u>+</u> 1.7 ª	<u>+</u> 3.4 ª	<u>+</u> 6.6 ^a	<u>+ 5.0</u> ª
M x M	23.3	42.1	25.0	49.9	33.2
(Family C)	<u>+</u> 0.4 ^b	<u>+ 1.0 ^b</u>	<u>+</u> 1.6 ^b	+ 7.3 ^b	<u>+</u> 6.8 ^b
C x M	24.6	43.5	28.8	86.2	65.1
(Family C)	+ 0.2 ª	<u>+</u> 0.6 ª	<u>+</u> 0.4 ª	<u>+</u> 20.8 ª	+ 15.0ª

<u>Note</u>: T tests were performed using the PROC TTEST procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$.

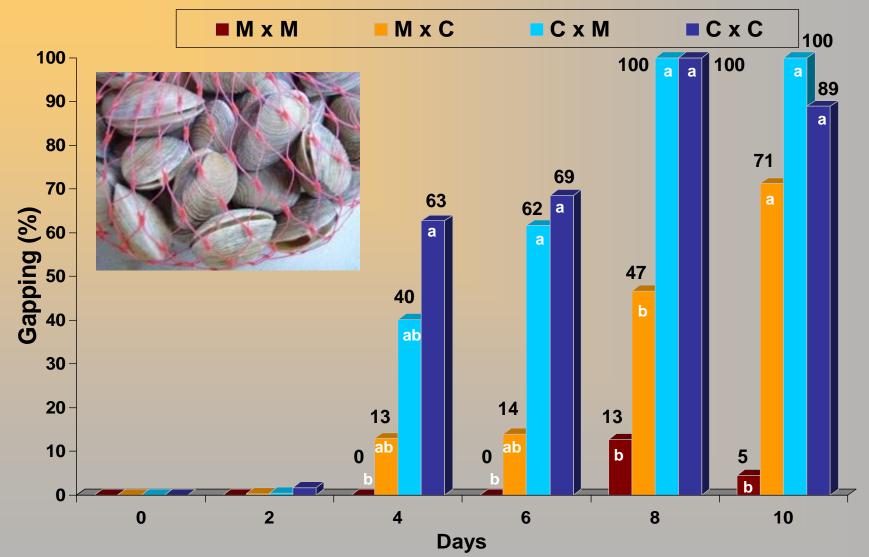
Grade (12 months) – Grower A

Product Quality



- Consumer acceptance
- Sensory evaluation and profiling

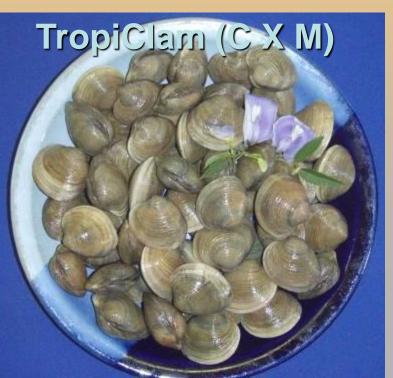
- Document shelf life
 - Survival in refrigerated storage (45°F)



Shelf Life: Survival in 45°F Storage Average of Families A,B,C – Harvested at 84.6°F

Note: A repeated measures analysis (PROC GLIMMIX) was performed (p<0.0001).

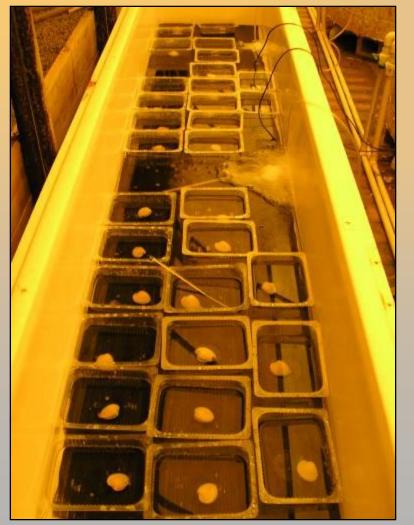
Shelf Life: Gapping in 45°F Storage Average of Families A, B, C


Note: A repeated measures analysis (PROC GLIMMIX) was performed (p=0.0237).

Summary

- Hybridization may offer improved clam production performance

 MxC ↑ SW and DryMtWt
- Genetic background played a significant role in responses
 - Family A, MxC ↑ SW,TW, DMtWt, Prod
 - Family C, CxM ↑ SW,TW, DMtWt, Prod

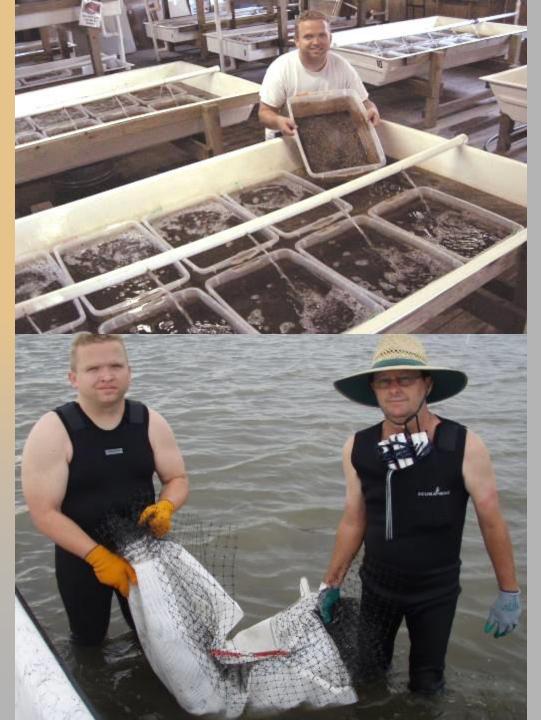

- Environmental conditions at growing sites also played a role in responses
 – Grower A, Hybrids > MxM
- Shelf life acceptable
 - 10 days for MxC, 8 days for CxM
 - Gapping in refrigerated storage problematic
 - By day 8 for MxC, day 4 for CxM

Backcrossing F1 Hybrids with Hard Clams

- Mating of a hybrid with one of its parents (or parental species)
- Hybrids (MxC and CxM) backcrossed to hard clams (MxM) as female or male
- <u>Objective</u>: Improve product quality, but maintain improved growth and survival

Hatchery Production

- Pure hard clams (MxM) crossed with F1 hybrids
 - MxC "Sunshine Clam"
 CxM "Tropiclam
- Multi-parental spawns
- Five families produced
 - Dec 2009 Feb 2010
 - 19 individual stocks

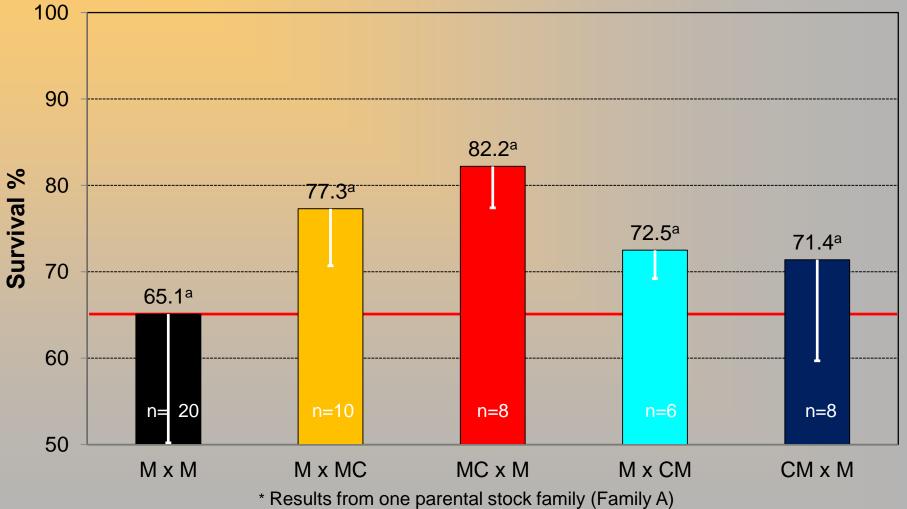


	Ba				
Backcross Families	Female ♀	Hybrid Family)	Male (⁷	Hybrid Family =	Stock
	MxM	С	MxM	С	МхМ
F	MxM	С	MxC	A	M x MC
G* H	MxM	С	MxC	С	M x MC
	MXM	С	CxM	С	M x CM
	MxM	С	MxM	С	МхМ
D	MxC	А	MxM	С	MC x M
E	MxC	С	MxM	С	MC x M
	CXM	С	MxM	С	CM x M

* M x CM replicate stock in Family G spawn was not viable

Nursing Backcross Seed

- Standard hard clam
 protocols used
- Land-based nursing
 Downwellers
 - May-June 2010
 - Cedar Key
- Field nursing
 - Bottom bags, 4mm
 - June–Sept 2010
 - Cedar Key


Nursing Backcross Seed: Field Results

Stock (♀ x ♂)	Shell Length (mm)	Shell Width (mm)	Total Weight (g)	Dry Meat Wt. (g)	Cond Index (DM/DS x 100)
M×M	20.0	9.6	2.4	0.08	4.8
	± 1.3	± 0.73	± 0.49	± 0.018	± 0.34
M x MC*	20.2	9.7	2.5	0.09	4.7
	± 1.1	± 0.55	± 0.39	± 0.014	± 0.32
MC* × M	20.8	9.9	2.6	0.08	4.7
	± 0.82	± 0.46	± 0.32	± 0.017	± 0.33
M x C∭⁺	20.9	9.8	2.7	0.08	4.8
	± 1.2	± 0.70	± 0.45	± 0.012	± 0.45
CM⁺ × M	20.3	9.7	2.5	0.07	4.7
	± 0.97	± 0.60	± 0.34	± 0.013	± 0.43

* Results from one family (Family A), +Results from one family (Family C)

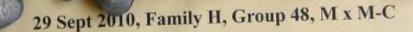
<u>Note</u>: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$.

Field Nursing Backcross Seed: Survival

Note: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when p< 0.05.

29 Sept 2010, Family D, Group 31, M x M

29 Sept 2010, Family D, Group 32, M-C x M


29 Sept 2010, Family D, Group 33, M-C x M

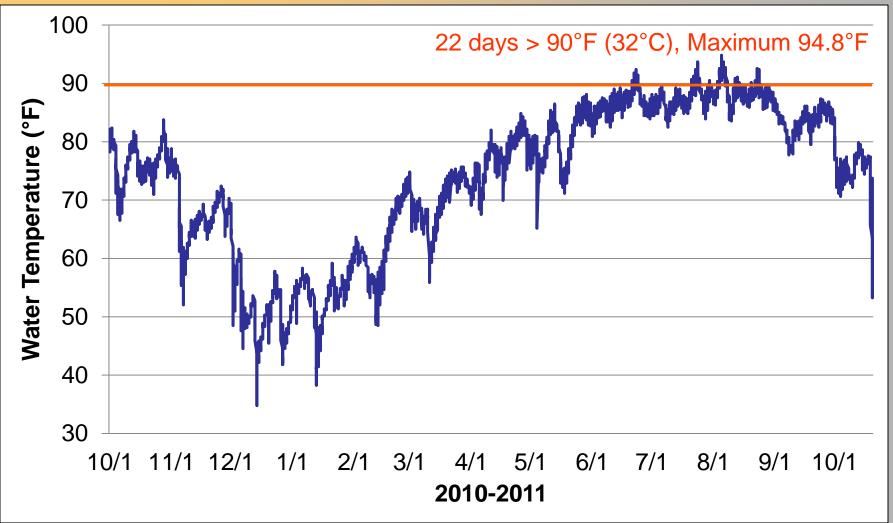
29 Sept 2010, Family D, Group 34, C-M x M

29 Sept 2010, Family H, Group 46, M x M

29 Sept 2010, Family H, Group 47, M x M-C

29 Sept 2010, Family H, Group 49, M x C-M

entific

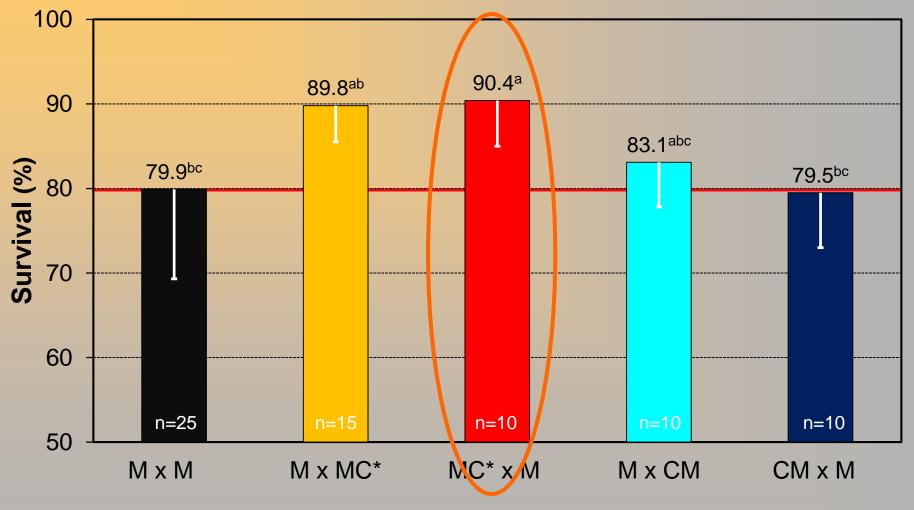

Cat. No. 09-016

Growout Trials Stock Comparison

- Replicated plants -Parental stocks and reciprocal backcrosses from 5 families
 - D, E, F, G, H
 - 109,000 seed
 - Cedar Key, FL
 - Sept 2010-Oct 2011
- Standard procedures
 - Bottom bags, 9 mm
 - Net coated and covered with wire
 - Stocked at 1150/bag (72/ft²)

Water Temperature (°F) Dog Island Lease Area, Cedar Key October 2010 - October 2011

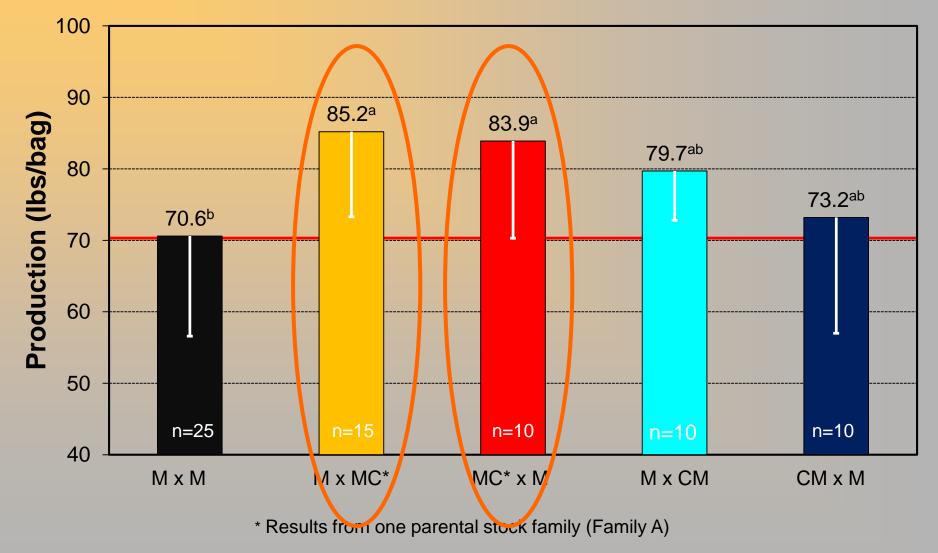
Water temperature measured every 2 hours by HOBO Pendant


Harvest Results (13 months): All Families

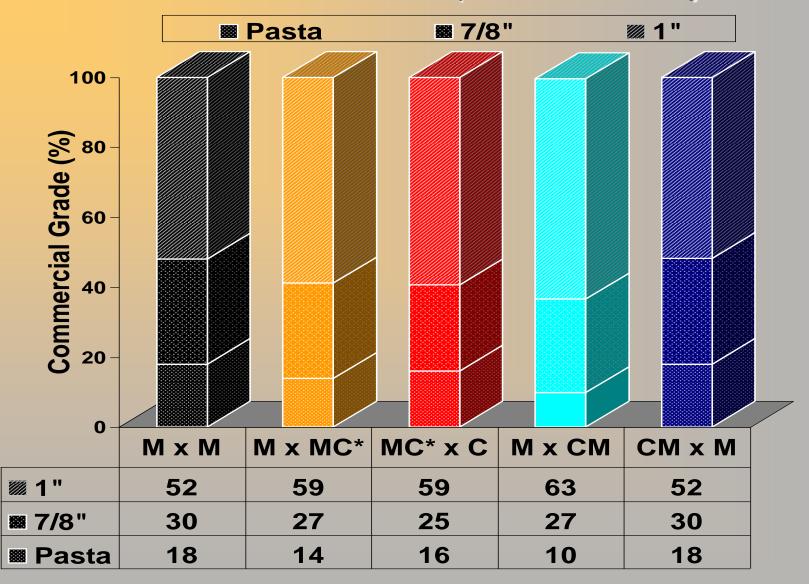
Stock (♀ x ♂)	Shell Length (mm)	Shell Width (mm)	Total Weight (g)	Dry Meat Wt. (g)	Cond Index (DM/DS x 100)
M×M	47.2	25.5	34.0	0.73	3.4
	± 2.9 ^b	± 1.3 ^{ab}	± 5.0 ^b	± 0.11 ^{ab}	± 0.28 ^a
M x MC*	48.8	26.2	37.6	0.82	3.4
	± 2.1 ^{ab}	± 0.90 ^{ab}	± 4.3 ^{ab}	± 0.11 ^{ab}	± 0.21 ^a
MC* × M	47.8	26.3	36.5	0.81	3.3
	± 2.1 ^{ab}	± 0.86 ^{ab}	± 4.7 ^{ab}	± 0.14 ^{ab}	± 0.25 ^a
M x CM	50.1	26.8	40.0	0.85	3.4
	± 1.7 ^a	± 0.78 ^a	± 3.4 ^a	± 0.096 ^a	± 0.23 ^a
CM × M	47.9	25.8	36.2	0.72	3.2
	± 2.9 ^{ab}	± 1.8 ^{ab}	± 6.7 ^{ab}	± 0.11 ^{ab}	± 0.40 ^a

* Results from one parental stock family (Family A)

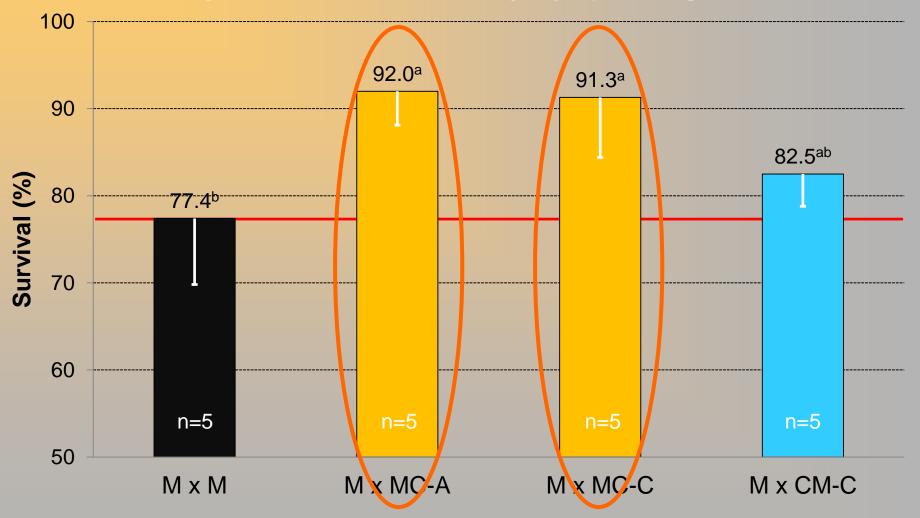
<u>Note</u>: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$.


Harvest Results (13 months): Survival All Backcross Families

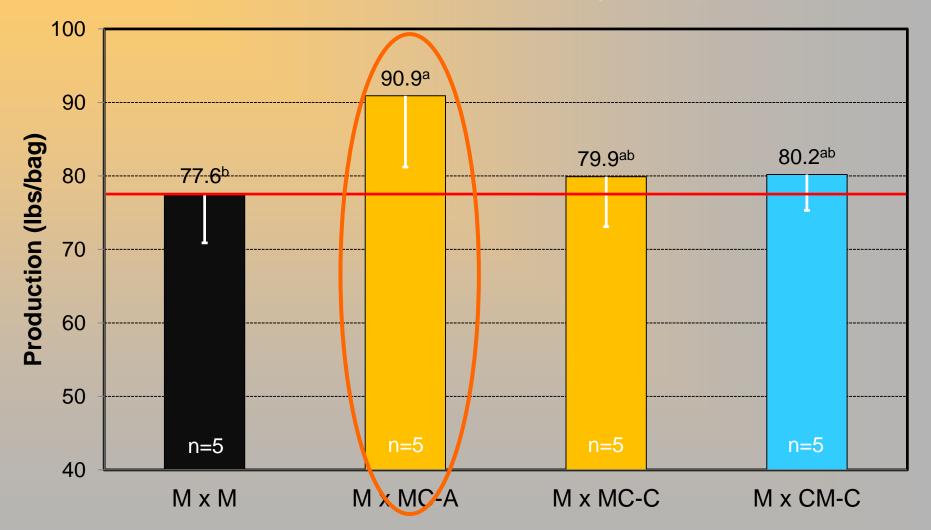
* Results from one parental stock family (Family A)


<u>Note</u>: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$.

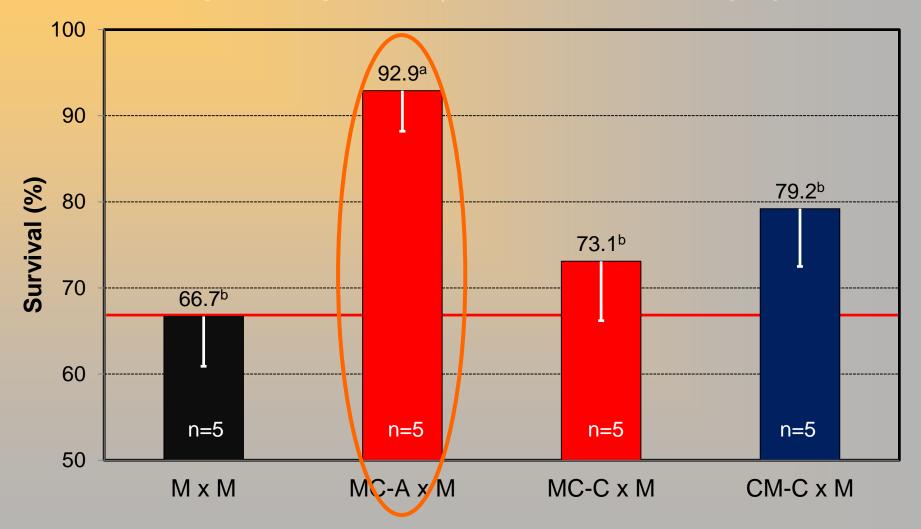
Harvest Results (13 months): Production All Backcross Families


<u>Note</u>: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$.

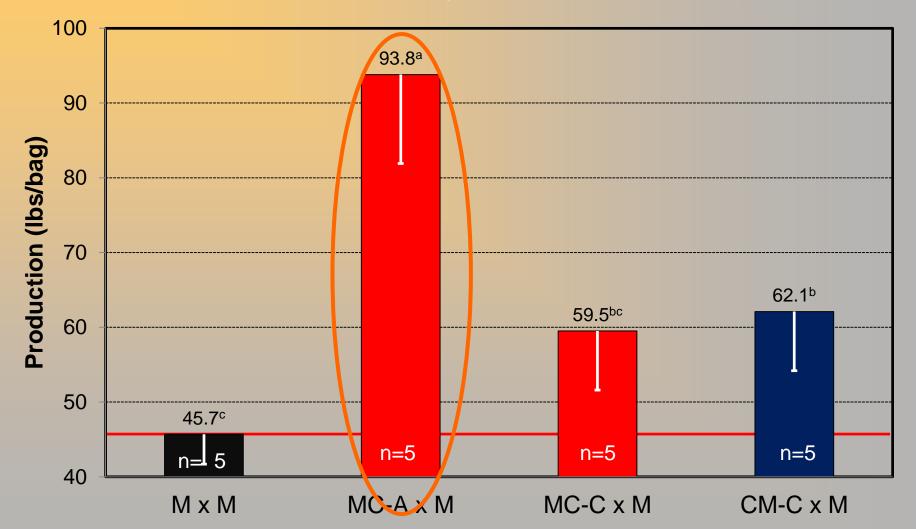
Harvest Results (13 months)


* Results from one parental stock family (Family A)

Harvest Results (13 months): Survival Family F: Hard Clam (M) ♀ x Hybrid ♂

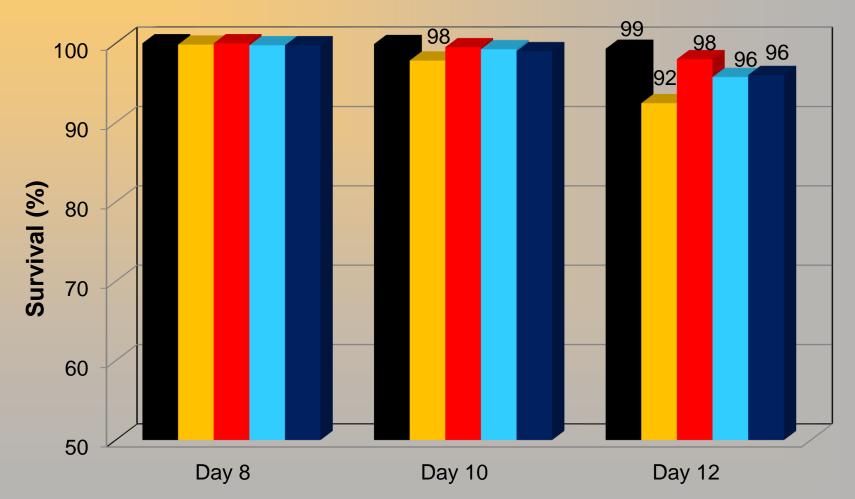

Note: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when p< 0.05.

Harvest Results (13 months): Production Family F: Hard Clam (M) $\stackrel{\frown}{}$ x Hybrid $\stackrel{\frown}{}$



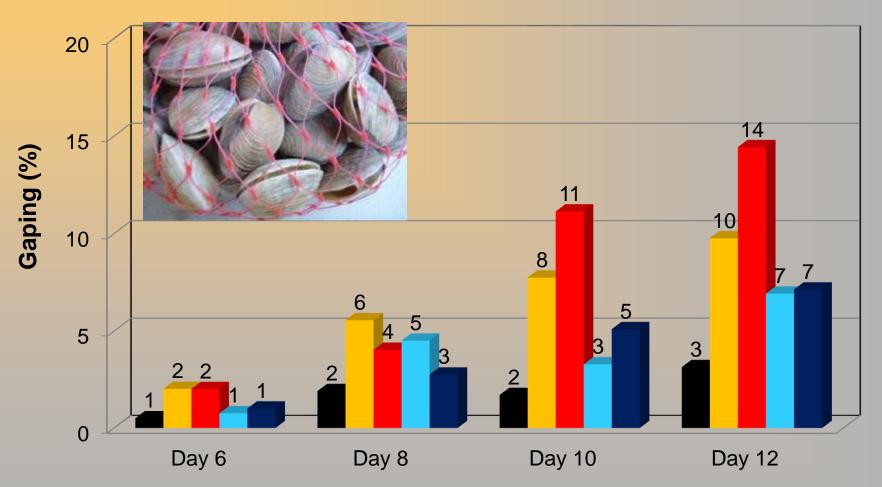
Note: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$.

Harvest Results (13 months): Survival Family D: Hybrid 2 x Hard Clam (M)


Harvest Results (13 months): Production Family D: : Hybrid 2 x Hard Clam (M)

<u>Note</u>: ANOVA were performed using the PROC GLM procedure of SAS. Treatment means were considered significantly different when $p \le 0.05$.

Shelf Life: Survival in 45°F Storage Average of All Families


 $\blacksquare M \times M = M \times MC = MC \times M = M \times CM = CM \times M$

Note: A repeated measures analysis (PROC GLIMMIX) was performed.

Shelf Life: Gaping in 45°F Storage Average of All Families

■M×M = M×MC ■MC×M ■M×CM ■CM×M

Note: A repeated measures analysis (PROC GLIMMIX) was performed.

Summary

- Backcrossing F1 hybrids to hard clams offered improved survival and production
 - M x MC and MC x M had > survival and production
- Genetic background (families) played a significant role in responses
 - For Family F, M x MC-A had > survival and production
 - For Family D, MC-A x M had > survival and production
- Shelf life commercially acceptable
 - At 10 days, 98-100% for all stocks
 - At 12 days, 92-96% for backcrosses versus 99% for hard clams
- Gaping in refrigerated storage acceptable
 - At 10 days, 3-11% for backcrosses versus 2% for hard clams
 - At 12 days, 7-14% for backcross stocks versus 3% for hard clams

Available Broodstock

- Group 32, Family D: MC-A x M
- Group 40, Family F: M x MC-A
- Group 44, Family G: M x MC-A

"We spawn millions!"

Acknowledgements

University of Florida

- Eric Cassiano, Reggie Markham, Barry Clayton, Russ Colson, Charles Mulligan
- Harbor Branch Oceanographic Institute at FAU
 - Dr. Susan Laramore, Fredrico Prahl
- Industry partners
 - Steve Hostetter, Barry Hurt, Chad O'Steen, Johnny Sheridan, Doug Telgin, Chris Taiani, Rick Viele, Bobby Witt
 - Cedar Key Aquaculture Farms, Dog Island Blues Clam Co., Cedar Key Seafood Distributors
- Cedar Key Aquaculture Association
- Supported by USDA NIFA Special Research Grants