Investigation of Ark Clam Culture and Marketability

PROJECT TEAM INVESTIGATORS:
Leslie Sturmer, Jose Nunez, LeRoy Creswell, Shirley Baker
University of Florida, Institute of Food & Agricultural Sciences

Robert Degner, Kimberly Morgan
University of Florida, Agricultural Market Research Center

Alan Power, Randal Walker
University of Georgia, Marine Extension Service

John Baldwin, Larry Nissmen
Florida Atlantic University, Dept. Biological Sciences

FUNDED BY:
USDA CSREES and Florida Sea Grant
Rationale

- Clam farming in Florida supports small businesses
 - Over 350 growers in 10 coastal counties
 - 1800 acres in leases
 - $13M in sales value
 - 92 shellfish wholesalers

- However, it is a monoculture industry

- Need for diversification from a single species
 - Augment profit potential
 - Spread production risks
Rationale

- Alternative species for aquaculture consideration
 - Native molluscan species
 - Cultured and marketed similar to hard clam, *Mercenaria mercenaria*

- Sea Grant-funded research has evaluated the suitability of several mollusk species
 - Angel wing, 1990-2
 - Bay scallop, 1997-9
 - Sunray venus, 2006-8
Rationale

- Ark clams harvested in mid-Atlantic states (VA, NC) in limited quantities
- Development of a major fishery for these species restricted by
 - Dispersed wild populations
 - Minimum understanding of reproduction
 - Small, isolated ethnic markets
- Research efforts in Virginia during 1990s concluded slow growth of arks limit aquaculture potential
- Natural recruitment of arks into newly-planted clam bags supported hypothesis that arks may have potential for commercial development in Florida
Reproductive Patterns

- Determine gametogenic cycles of blood ark off Florida’s east coast (2002-3) and ponderous ark off Florida’s west coast (2001-3)
 - Histologic analysis of gonadal tissue
 - Monthly gonadal index values
 - Peak spawning periods
 - Sex ratios

- Findings published
Reproductive Patterns

- Dribble spawning reproductive strategy for both ark clams
- Prolonged spawning over most of year with bimodal peaks
- Sexes separate, females and males represented in similar ratios

<table>
<thead>
<tr>
<th>Ark</th>
<th>Sexes</th>
<th>Sex Ratio (M/F)</th>
<th>Reproductive Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>Dioecious, 2% hermaphrodites</td>
<td>2.68 / 1</td>
<td>Major peak during late spring-early summer months (45% ripe in May). No activity in summer. Minor peak during winter (21% ripe in December). Spawning seen in all months.</td>
</tr>
<tr>
<td>Ponderous</td>
<td>Dioecious, no hermaphrodites</td>
<td>1.19 / 1</td>
<td>Ripens rapidly during the spring, peaks in summer and fall months. However, spawning noted year round.</td>
</tr>
</tbody>
</table>
Seed Production

- Set-up experimental molluscan shellfish hatchery and nursery at UF Whitney Lab near Saint Augustine

- Conduct spawning, larval rearing and setting trials
- Develop ark seed production techniques
- Compare with standard hard clam protocols
Spawning

- Wild ark clams were sourced from different sites
- Broodstock were conditioned at lab
- Spawning induced by temperature cycling from 20 to 30°C
- Spawning behavior like hard clam
- Serotonin injection not successful
Spawning Trials, 2002-5

<table>
<thead>
<tr>
<th>Ark</th>
<th># Trials</th>
<th>% Spawns</th>
<th>Spawns per month (%)</th>
<th>Fecundity (# eggs /)</th>
<th>Fertilization Rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>29</td>
<td>38</td>
<td>March -- 10</td>
<td>0.7 – 3.9 million</td>
<td>low – 55%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>April --- 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May --- 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>June --- 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>July --- 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponderous</td>
<td>51</td>
<td>20</td>
<td>August ----- 10</td>
<td>1.5 – 3.5 million</td>
<td>low – 79%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>September - 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>October ----- 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>November -- 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fertilized eggs
 - Color: orange to reddish
 - Size:
 - Blood: 55 μm
 - Ponderous: 65 μm
 - Hard clam: 70 μm
Embryonic Development

Blood Ark
- Fertilization: 0 minutes
- First cleavage: 1 hour
- Blastula: 4-5 hours
- Gastrula: 7-8 hours

Ponderous Ark
- Fertilization: 0 minutes
- First cleavage: 1 hour
- Blastula: 5 hours
- Gastrula: 8-9 hours

- Documented using light and fluorescence microscopy
Embryonic Development

- Differences in timing of development between ark clams were negligible
- Behavior and developmental timeline of ark clams similar to hard clam
- Documentation of protocol and reference for commercial hatchery development
Larval Rearing

<table>
<thead>
<tr>
<th>Species</th>
<th>Day</th>
<th>Stage</th>
<th>Larval Size (μm)</th>
<th>Screen size (μm)</th>
<th># per ml</th>
<th>Survival %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Clam</td>
<td>1</td>
<td>D-shape</td>
<td>105 x 90</td>
<td>34</td>
<td>6.9</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Setting</td>
<td>225 x 215</td>
<td>100</td>
<td>2.7</td>
<td>39</td>
</tr>
<tr>
<td>Blood Ark</td>
<td>1</td>
<td>D-shape</td>
<td>80 x 65</td>
<td>34</td>
<td>4.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Veliger</td>
<td>115 x 110</td>
<td>54</td>
<td>0.5</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Setting</td>
<td>275 x 200</td>
<td>110</td>
<td>0.2</td>
<td>5</td>
</tr>
<tr>
<td>Ponderous Ark</td>
<td>1</td>
<td>D-shape</td>
<td>90 x 70</td>
<td>34</td>
<td>2.4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Veliger</td>
<td>130 x 100</td>
<td>54</td>
<td>1.7</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Setting</td>
<td>211 x 155</td>
<td>110</td>
<td>0.6</td>
<td>25</td>
</tr>
</tbody>
</table>
Setting and Post-set

- Setting was problematic
- No distinct pediveliger stage
- Setting based on behavior (probing the tank bottom) and size (>200 μm)
- Experiments conducted to evaluate cues on settlement
 - Physical (substrates - sand, mud; poly strands) cues – 0% set
 - Chemical (H₂O₂, KCl, exudate, norepinepherin) cues – 0% set
 - Biological (algal species) cues –
 - T-Iso, Pav, Ch, BG, no food – 0% set
 - Benthic algae (<35 μm) – 74% set within 7 days
Land-based Rearing

- Post-set rearing in downwellers
 - Tendency to crawl out of tanks
 - Attach to tanks and other arks with byssal threads
 - Growth rates
 - Blood: 6-12 days to 1 mm
 - Ponderous: 49-56 days to 1 mm

- Land-based nursing in downwellers
 - Sieving difficult
 - Growth rates
 - Blood: 3-4 months to 14-15 mm SL (3.5-4.3 mm/mo)
 - Ponderous: 6 months to 19 mm SL (3.2 mm/mo)
Blood Ark Culture

- Conduct field nursery and growout rearing trials in St. Augustine (east coast of Florida), 2003-4
- Document growth and survival in soft (polyester) bags and hard (polyethylene) culture bags
From 14 mm to 34-35 mm (1.4”) SL in 11 months (1.9 mm/mo)

No differences in bag types
Blood Ark Shell Width

- From 7 mm to 22-23 mm (0.9”) SW in 11 months (1.4 mm/mo)
- No differences in bag type
Blood Ark Survival

- 66% survival in nursery (2 months), 80-93% survival in growout (9 months)
- Overall survival of 61% in hard bag and 53% in soft bag (11 months)
Ponderous Ark Culture

- Conduct field nursery and growout trials in Cedar Key (west coast of Florida), 2004-6
- Document growth and survival in hard (polyethylene) culture bags
From 19 mm to 44 mm (1 ¾”) SL in 24 months (1 mm/mo)
From 11 mm to 30 mm (1 ¼”) SW in 24 months (0.8 mm/mo)
From 2 grams to 31 grams whole weight (14 per pound) in 24 months
76% survival in nursery (6 months), 72% survival in growout (18 months)

Overall survival of 62% through Dec 05, or 55% through Jun 06
Ark versus Hard Clam Growth

- Shell Length to Width Ratio: 1.5-Blood Ark, 1.4-Ponderous Ark, 1.9-Hard Clam
Ark Clam Marketability

- Assess magnitude of potential domestic market for ark clams, 2003
 - Over 2,100 shellfish wholesalers surveyed nationwide
 - 309 respondents, or 15%
- Survey results revealed limited trade awareness
 - Over 90% wholesalers unfamiliar with them
 - Only 1% reported selling ark clams in previous year
- Nearly one-third were willing to evaluate product samples of both species
Ark Clam Marketability

- Determine desired product attributes and evaluate sensory attributes, 2003-4
 - 82 interested dealers received live samples and questionnaire
- Evaluate a number of basic product characteristics – appearance, taste, aroma, and textural properties
 - 52 provided useful evaluations, or 63%
- Estimate potential sales through respective firms
Marketability

- **Appearance** evaluations were mediocre
 - Rating of 5 on 0 to 10 scale
 - Negative comments on black color, “fuzzy and “furry” shell
- **Meat Color** evaluations fared worse
 - 4.2 rating for blood
 - 3.6 rating for ponderous
 - Negative comments on bloody appearance
- **Texture** was “slightly” to “much too tough”
- Taste ratings were under 5 if eaten raw and about 5 is eaten cooked
Ark Clam Marketability

- Sales projections for arks
 - 50-60% of respondents could not sell
 - 20% did not know if they could
 - 11 firms, or 21%, estimated sales of 30 to 170,000 blood arks per week
 - 8 firms, or 14%, estimated sales of 30 to 120,000 ponderous arks per week

- Wholesale prices ranged from $0.18-0.25 per ark clam

- Preferable sizes ranged from 1-1.25” shell width

- Current sellers noted inadequate supplies appear to limit market growth

- Current market is limited

- Widespread lack of familiarity
- Blood Ark – 99% survival in refrigerated storage after 9 days, 88% after 15 days
- Ponderous Ark – 99% survival in refrigerated storage after 23 days
Ark Clam Nutritional Composition

- Nutritional facts and labeling for cultured ark clams were determined for serving size of 100 grams of edible portion
 - Low in calories, fat, cholesterol
 - No carbohydrate
 - High in protein
 - High in sodium
 - High in iron (50-70% of daily value)

- In comparison, hard clams
 - Higher in calories
 - Similar in fats, cholesterol, and carbohydrate
 - Less sodium
 - 1/2 to 1/3 daily values for iron

<table>
<thead>
<tr>
<th>Blood Ark</th>
<th>Ponderous Ark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition Facts</td>
<td>Nutrition Facts</td>
</tr>
<tr>
<td>Serving Size (100g)</td>
<td>Serving Size (100g)</td>
</tr>
<tr>
<td>Amount Per Serving</td>
<td>Amount Per Serving</td>
</tr>
<tr>
<td>Calories</td>
<td>36</td>
</tr>
<tr>
<td>Calories from Fat</td>
<td>6</td>
</tr>
<tr>
<td>% Daily Value^</td>
<td>1</td>
</tr>
<tr>
<td>Total Fat</td>
<td>0.5g</td>
</tr>
<tr>
<td>Saturated Fat</td>
<td>0g</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>35mg</td>
</tr>
<tr>
<td>Sodium</td>
<td>740mg</td>
</tr>
<tr>
<td>Dietary Fiber</td>
<td>less than 1 gram</td>
</tr>
<tr>
<td>Sugars</td>
<td>0g</td>
</tr>
<tr>
<td>Protein</td>
<td>1g</td>
</tr>
<tr>
<td>Vitamin A R%</td>
<td>•</td>
</tr>
<tr>
<td>Vitamin C %</td>
<td>•</td>
</tr>
<tr>
<td>Calcium %</td>
<td>•</td>
</tr>
<tr>
<td>Iron %</td>
<td>•</td>
</tr>
</tbody>
</table>

^Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs:

<table>
<thead>
<tr>
<th>Calories</th>
<th>2,000</th>
<th>2,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fat</td>
<td>Less than 65g</td>
<td>80g</td>
</tr>
<tr>
<td>Saturated Fat</td>
<td>Less than 20g</td>
<td>25g</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Less than 300mg</td>
<td>300mg</td>
</tr>
<tr>
<td>Sodium</td>
<td>Less than 2,400mg</td>
<td>2,400mg</td>
</tr>
<tr>
<td>Dietary Fiber</td>
<td>28g</td>
<td>30g</td>
</tr>
<tr>
<td>Calorie per gram:</td>
<td>Fat 9 • Carbohydrate 4 • Protein 4</td>
<td></td>
</tr>
</tbody>
</table>

^Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs:

<table>
<thead>
<tr>
<th>Calories</th>
<th>2,000</th>
<th>2,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fat</td>
<td>Less than 65g</td>
<td>80g</td>
</tr>
<tr>
<td>Saturated Fat</td>
<td>Less than 20g</td>
<td>25g</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Less than 300mg</td>
<td>300mg</td>
</tr>
<tr>
<td>Sodium</td>
<td>Less than 2,400mg</td>
<td>2,400mg</td>
</tr>
<tr>
<td>Dietary Fiber</td>
<td>28g</td>
<td>30g</td>
</tr>
<tr>
<td>Calorie per gram:</td>
<td>Fat 9 • Carbohydrate 4 • Protein 4</td>
<td></td>
</tr>
</tbody>
</table>
Ark Clam Market Information

Complete Market Report can be found on the UF/IFAS Florida Agricultural Market Research Center’s website: http://www.agmarketing.ifas.ufl.edu, first click on “Publications,” then click on “Marketing Research Publications 2000+”

Summaries of Phase I, II, III of the marketing assessment can be found at the UF/IFAS Electronic Data Information Source (EDIS) website: http://edis.ifas.ufl.edu, click on EDIS pub FE478 and FE568.
Ark Clam Summary

- Seed can be produced using standard hard clam techniques
- Most likely higher seed costs
 - Lower larval survival
 - Longer larval period
 - Blood – 17 days
 - Ponderous – 21 days
 - Hard clam – 9 to 12 days
- Need to optimize survival at settlement
Ark Clam Summary

- Land-based nursing, field nursing and growout can be conducted using equipment and methods for hard clams
 - Survival commercially acceptable in field
 - Blood – 57%
 - Ponderous – 62%
 - Hard Clam – 56 to 64%

- Crop period from 1 mm SL to 25 mm SW (“littleneck”-size)
 - Blood – 16 mo
 - Ponderous – 24 mo
 - Hard Clam – 18 to 24 mo
Ark Clam Summary

- Unlikely to be a widespread, mainstream demand for ark clams
- Market development proponents should recognize importance of ethnic markets in target locations on East and West coasts
- Targeting seafood dealers with large Asian (“akagai”) and Hispanic (“pata de mula”) populations could result in profitable niche markets