Sunray Venus Clam Seed Production and Broodstock Development for Florida Culturists

John Scarpa, Leslie N. Sturmer, Jose Nuñez, R. LeRoy Creswell and Susan E. Laramore

BACKGROUND

- Based "solely" on Mercenaria mercenaria
- Diversifying product "line" may avoid economic and disease problems
- Different species have been examined (e.g., angel wing, scallops, ark clams)
- New species: Sunray Venus Clam

BACKGROUND

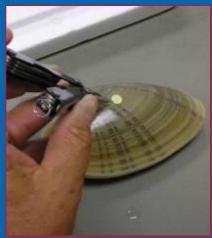
- Attractive large (up to 15 cm SL) clam distributed from SC to FL
- Targeted species for commercial harvest in 1960s
- Harvest halted due to spotty distribution, limited fishing grounds
- Natural growth rate experiments suggested quick grower
 (7.5 cm, 40 g whole in 12 months)

OBJECTIVE

- Utilize current hard clam methods as a starting point to:
 - 1) Identify spawning methods
 - 2) Establish hatchery protocols
 - 3) Examine early nursery culture
 - 4) Grow a test group
 - 5) Test market product

BROODSTOCK

BROODSTOCK



WET DRY

BROODSTOCK

1:1 sex ratio

< 10% mortality after 1 week

SPAWNING

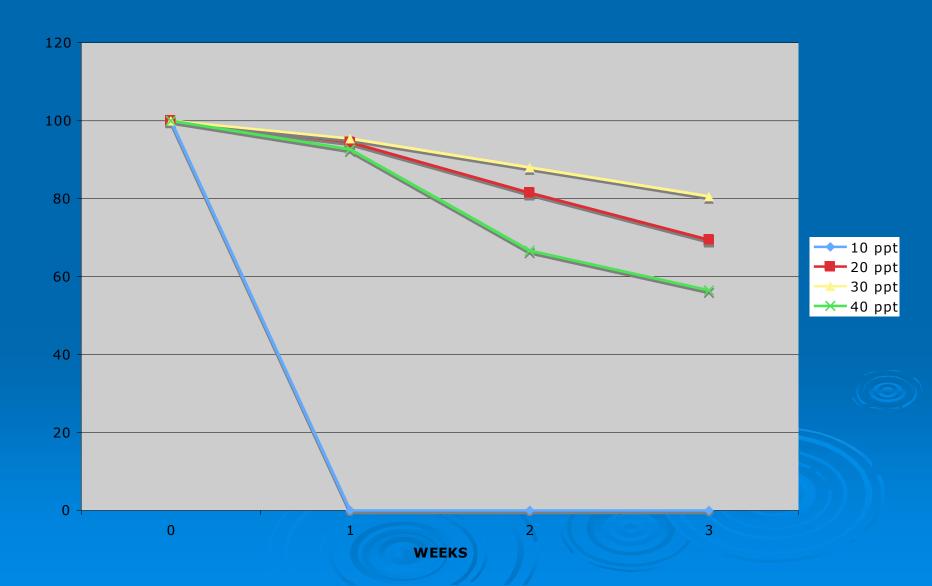
Thermal Shock (increase 10°C)
Dissected sperm addition
Serotonin injection (0.4 mL 2mM)

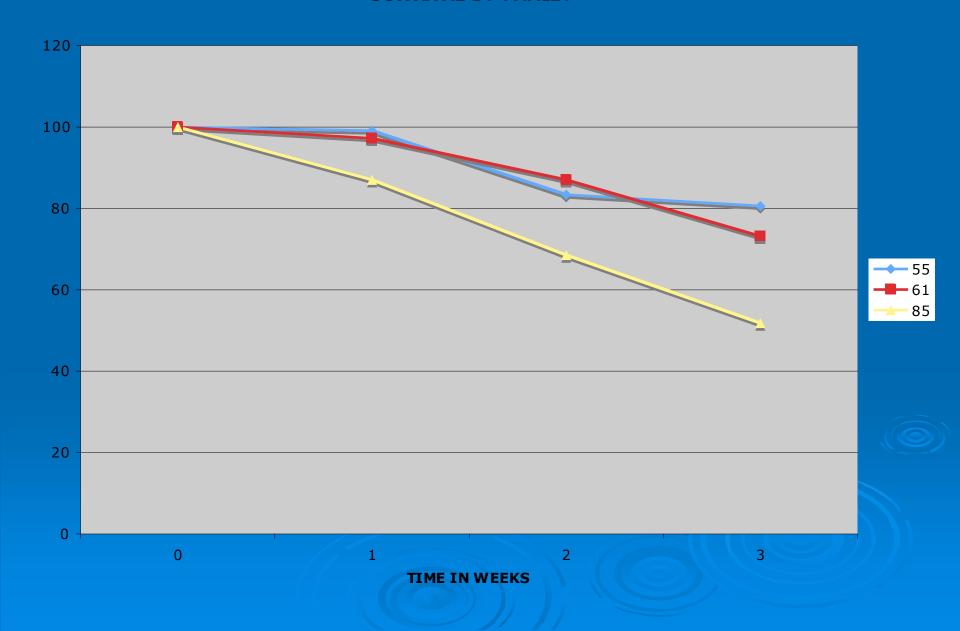
Setting and Post-set Culture

Pediveligers were noted by day 6-9 and moved to setting system

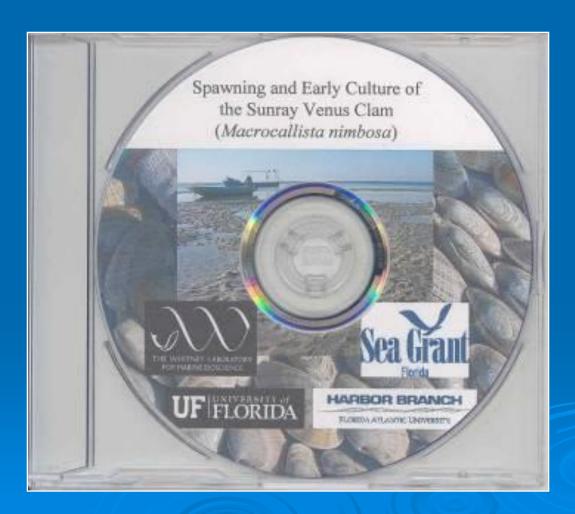
Pediveligers stocked at 2-3K/ft² of bottom area, fed microalgae, and rinsed with saltwater

Salinity Materials and Methods

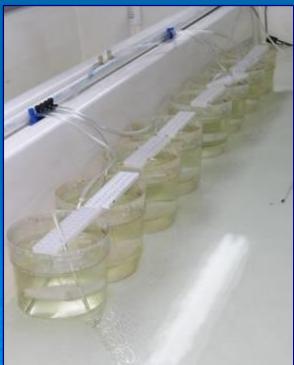

- > Triplicate Families (55, 61 & 85)
- > 12 clams from each family/ 4-L beaker
- > Avg wt 19±3 mg
- > Avg length 4.7±0.3 mm

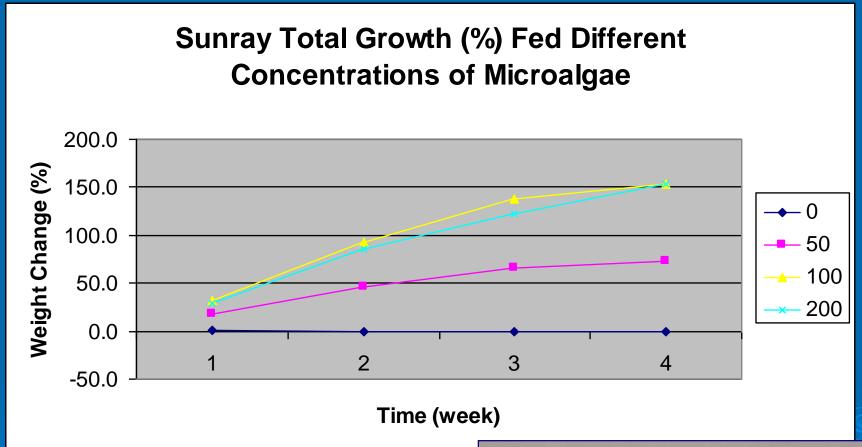


RESULTS

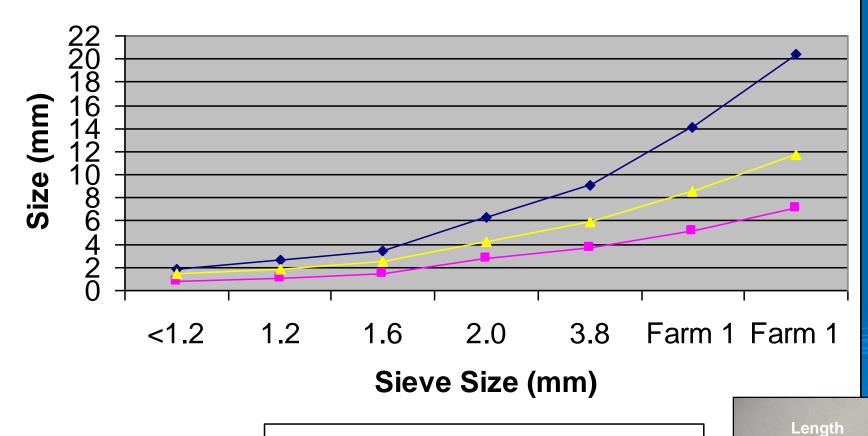

SURVIVAL BY SALINITY

SURVIVAL BY FAMILY


DVD summarizing seed production techniques and documentation of sunray venus development during hatchery phase is available (FLSG).

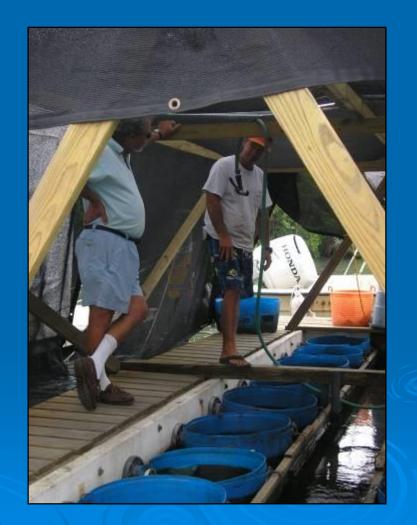

Feed Experiment

- > Triplicate 4-L beakers
- > 24 clams/beaker (42±3 mg/clam)
- Fed T-lso, twice/day (0, 50, 100, 200K cells/mL)
- Salinity ~30 ppt Temp 23-29°C



Feed Experiment

Sunray Venus Clam Seed Size



"Field" Nursery



37/mL at 17200/m² (1600/ft²)

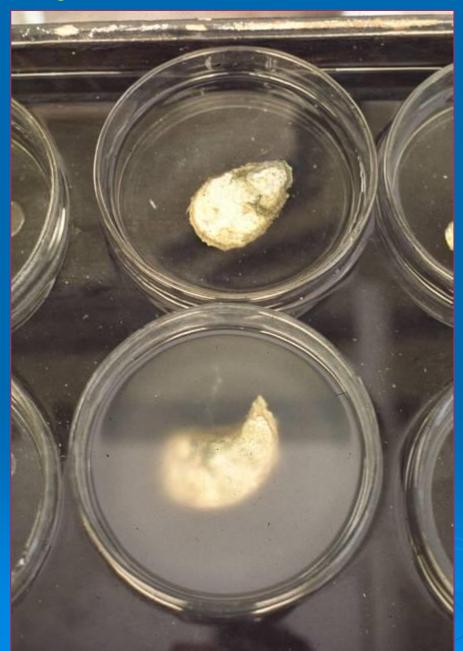
"Field" Nursery (4 months)

Field Nursery

Broodstock Development

- Florida BMPs (Local Stocks)
- Maintaining Genetic Diversity
- Effective Population Size (N_e)

STAGES FOR THE CULTIVATION OF BIVALVE MOLLUSCS


HATCHERY......ROWOUT

....LAND BASED...... FIELD BASED....

CONTROLLED CONDITIONS......NATURAL CONDITIONS

Induced Spawning - Diversity of the state of

Effective Parental Number

Where:

N_e = Effective Parental Number (20?)

 N_m = Number of Contributing Males

N_f = Number of Contributing Females

Effective Parental Number

9	3	Total Spawners	Ne
10	10	20	20
9	11	20	19.8
8	12	20	19.2
7	13	20	18.2
6	14	20	16.8
5	15	20	15
1	19	20	3.8
7	18	25	20.2
6	30	36	20
5	195	200	19.5

Breeding Contribution Equal Gametic (nuclear/mt)

	₫ a	∂ b	♂ c	♂ d	∂ e
₽ A	Aa	Ab	Ac	Ad	Ae
₽B	Ba	Bb	Bc	Bd	Be
₽C	Ca	Cb	Cc	Cd	Ce
₽ D	Da	Db	Dc	Dd	De
₽ E	Ea	Eb	Ec	Ed	Ee

Breeding Contribution Un-Equal Gametic

	∂a	∂b	∂' c	♂ d	⊕
QA	Aa	Ab	Ac	Ad	Ae
♀B	Ba	Bb	Bc	Bd	Be
₽C	Ca	Cb	Cc	Cd	Ce
₽D	Da	Db	Dc	Dd	De
₽E	Ξa	Eb	Εc	Ed	Ee

Breeding Contribution Un-Equal Gametic

	Sa	ðb	∂ c	∂d	∂e
\$A	Aa	Ab	Ac	Ad	Ae
₽B	Ba	Bb	Вс	Bd	Be
₽C	Ca	Cb	Cc	Cd	Ce
₽ D	Da	Db	Dc	Dd	De
₽ <mark>E</mark>	Ea	Eb	Ξc	Ed	Ξe

Breeding Contribution Un-Equal Gametic/Larval Survival

	∂ a	ðb	♂ c	♂ d	∂ e
2A		Ab		Ad	
₽B					
₽C			Cc	Cd	
₽ D					De
₽ E		<u>E</u> b	Ec		(iia

Breeding Contribution Unintended Selection (nuclear/mt)

	∂ a	∂ <mark>b</mark>	∂° c	♂ c	∂ e
₽ A	Aa	Ab			
₽B	Ba	Bb			
₽C					
PD					
₽ E					

Project Continuation

- 1) Create initial founder broodstock lines for Florida hatcheries
- 2) Demonstrate to hatchery operators the proper development and maintenance of broodstock for seed production

ACKNOWLEDGMENTS

- Supported by FL Sea Grant (R/LR-A-44, 45, & 46)
- Many, many people who assisted in collecting and caring for the sunray venus clams:
 Eric Cociona (UE)
 - **Eric Cassiano (UF)**
 - **Ewan Leighton (Leighton Clam Co.)**
 - **Kevin Reinecke (Blue Acres)**
 - John Stevely (UF)
 - Van Lewis (Lewis Ag)
 - Fred Prahl (HBOI)
 - **Kyrstal Baird (HBOI)**
 - and many others that I have missed