

EXAMINING RECOVERY OF SOIL PROPERTIES AFTER HARVEST AND CULTURE INTENSITY

L. Rex Ellis,¹ Todd Z Osborne,¹ and Bill White² UF FLORIDA

¹Univeristy of Florida (UF), Soil and Water Science Department ²UF School of Forestry and Resource Conservation, Fisheries Program

DOG ISLAND HDLA SOIL CHARACTERIZATION STUDY, 2009-10

Soil Elevation Low (-6.5) to High (+1.5")

Organic Matter Low (0.5%) to High (4%)

Clay Content Low (1%) to High (5%)

- Information collected was used to produce bathymetric and soil property maps of Dog Island HDLA.
- Spatial relationships and lease specific trends were evident.

SOILS-BASED APPROACH TO SHELLFISH AQUACULTURE

- Findings from soil characterizations at Dog Island HDLA led to the following questions:
 - Do soil properties differ in areas of intensively farmed leases versus adjacent unfarmed areas (e.g., easements, navigational corridors)?
 - Do relationships exist between hard clam aquaculture harvesting methods and soil properties? If so, what is the recovery time of the soils?

DOG ISLAND HDLA FARMING INTENSITY STUDY

Objective

 Determine if soil properties differ between farmed leases and adjacent easements

Methodology

- Evenly spaced, paired soil cores taken within 6 leases and easements at Dog Island HDLA during the summer 2011 and within 3 leases and easements in winter 2012.
- Particle size distribution (sand, silt, and clay) and organic matter (OM) content determined

DOG ISLAND HDLA FARMING INTENSITY: SAMPLING SITES

Organic Matter Low (0.5%) to High (4%)

Clay Content Low (1%) to High (5%)

SOIL PROPERTIES - DOG ISLAND HDLA LEASE PARCEL 816 - SUMMER 2011

Note: T-tests were performed using Microsoft Excel 2007. Treatment means were considered significantly different when p< 0.05.

SOIL PROPERTIES - DOG ISLAND HDLA LEASE PARCEL 816 - WINTER 2012

Note: T-tests were performed using Microsoft Excel 2007. Treatment means were considered significantly different when p< 0.05.

SOIL PROPERTIES - DOG ISLAND HDLA LEASE PARCEL 819 - SUMMER 2012

Note: T-tests were performed using Microsoft Excel 2007. Treatment means were considered significantly different when p< 0.05.

SOIL PROPERTIES - DOG ISLAND HDLA LEASE PARCEL 819 - WINTER 2012

Note: T-tests were performed using Microsoft Excel 2007. Treatment means were considered significantly different when p< 0.05.

DOG ISLAND HDLA FARMING INTENSITY STUDY: SUMMARY

 No differences between paired easements and lease samples

HARVESTING STUDIES

Objectives

 Determine trends in soil properties during a fallow period following hard clam bottom bag harvesting

Methodology

- Sampled soils (0-4 in, 4-8 in)
 - 0, 1, 2, 4 and 8 weeks post harvest
- Clam bag harvest sites and adjacent, less-disturbed reference sites were sampled
- Analyze soils for particle size (sand, silt, and clay) and OM

DOG ISLAND HDLA HARVESTING STUDY: SITE SELECTION

Lease 803

- Deeper bottom
- Slough area
- Protected from waves
- Loamier soils

Lease 819

- Sand bar
- Shallow
- Frequent wave action
- Sandier soils

DOG ISLAND HDLA HARVESTING STUDY: SAND (%) CONTENT

DOG ISLAND HDLA HARVESTING STUDY: CLAY (%) CONTENT

DOG ISLAND HDLA HARVESTING STUDY: SILT (%) CONTENT

DOG ISLAND HDLA HARVESTING STUDY: ORGANIC MATTER (%) CONTENT

GULF JACKSON HDLA HARVESTING STUDY: SITE SELECTION

- Conducted in Summer 2012
- Selected three lease parcels:
 - **630**
 - **653**
 - **675**
- Used same methodology as Dog Island HDLA Harvesting Study

GULF JACKSON HDLA HARVESTING STUDY: SAND (%) CONTENT

GULF JACKSON HDLA HARVESTING STUDY: CLAY + SILT (%) CONTENT

GULF JACKSON HDLA HARVESTING STUDY: ORGANIC MATTER (%) CONTENT

SUMMARY

Hard Clam Intensity Study

0-4 inches vs. 4-8 inches

- Lower sand and higher clay, silt, and OM contents in top 4 inches of soil than for soils at 4-8 inches.
- Reference vs. Harvest
 - No difference
- Ongoing at Gulf Jackson HDLA

Hard Clam Harvesting Study

- Spatial variation
 - Lease parcels with different soil attributes were chosen
- Recovery of soil properties occurs within 2 to 8 weeks after harvest at leases examined.
- Information could drive management decisions similar to terrestrial farming

- Examining alternative methods of culture (bottom nets) and harvesting (mechanical – box harvester) effects on aqueous soil properties
- Funded by Florida Sea Grant, 2012-3

Bottom net planting of hard clams, Massachusetts

Box harvester used by Virginia clam growers

ACKNOWLEDGMENTS

UF Personnel

Reggie Markham, Barry Clayton, Matt Norton, Brenhan Street, Bryce Van Dam, Ben Loughran, Alexandra Rozin, Kendra Thomason, and Kayla Thomason

Clam Farmers

Ken Edmunds, Craig Parks, Jeff Schleede, Dan Solano, Chris Taiani, Rick Viele, Bobby Witt, J.J. Hanley, Jesse Everidge, and Joey Cannon

Funding

USDA NIFA Special Research Grant

United States Department of Agriculture National Institute of Food and Agriculture