Application of Triploidy to an Emergent Oyster Culture Industry on Florida's West Coast: Results of UF Growout Trials

Carter Cyr, Reggie Markham, and Leslie Sturmer University of Florida / IFAS Florida Sea Grant Shellfish Aquaculture Extension Cedar Key, FL

Charles Sims University of Florida / IFAS Food Science and Human Nutrition Gainesville, FL

Application of Triploidy to an Emergent Oyster Culture Industry on Florida's West Coast Project demonstrates and evaluates an oyster breeding technique under local conditions

OBJECTIVES are two fold:

- Document production performance, and evaluate quality of diploid (2N) and triploid (3N) oysters
- 2) Examine effects of management practices in replicated field trials

Funded by:

Seed Production

SPAWNS

- Trial 1: April 2016
 - 3N: FL west coast $2N \stackrel{\bigcirc}{=} X LSU 4N \stackrel{\checkmark}{_}$
 - 2N: FL west coast stocks, half siblings
- Trial 2: September/October 2016
 - 3N: LSU and AU hatcheries
 - 2N: FL west coast hatchery

LAND-BASED NURSERY

- Trials 1&2
 - 3N & 2N: Nurse in wellers at commercial facility in Cedar Key

UF Field Trials

FIELD-BASED NURSERY

	Trial 1	Trial 2
Seed Size (avg)	26 mm	29 – <mark>34</mark> mm
Time	2.5 months	1.5 months
Stocking Density	625-5000/bag	700/bag
Juvenile Size (avg)	51 – 54 mm	40 – 47 mm

9 mm mesh bags 4.5" square floats

GROWOUT TRIAL 1: Oct 2016—Apr 2017

Timeframe:

GROWOUT TRIAL 1

Margaret a

- Bernelle La Des

FL 9846 NR 🔳

4.5" square floats placed on top of bags

FARCH

UF FLORIE

27

teleco

SERVICE

14 mm mesh bag

..... -----

.....

.....

101100 111 10 11 0 111 18 41 8 415

Liell D.

1100

iell De

..... -

- Shell Metrics
- Weight Metrics
 - Total
 - Meat (wet)
 - Meat (dry)
- Condition Index
- Survival
- Biofouling Weight
 - -On bags
 - -On oysters
- Bag Metrics
 - Oyster volume
 - --- Oyster height

Ready

- Bag height
- Labor Hours

VARIABLES MEASURED: Variables Reporting

	Dana Lauranta	E	Dete	D :		11-1-	CROPAT	0 т													
Insert	Page Layout	Formulas	Data	Keview	View	Неір А	CKOBAT	¥ Tell m	e what you v	want to do											
Calibr	ri 🔹	11 × A /		= %-	😽 Wra	ap Text	Gener	ral	-			Normal	Bad					\utoSum ⊸	AT >	C	
в 1	τυ- 🖽	- <u>&</u> - <u>A</u>	- = =	= = -	🗏 🗮 Mer	rge & Cente	r - \$ -	% 9 €	.0 .00 Co	onditional F	ormat as	Good	Neutr	ral	Insert	Delete Fo	rmat	ill -	Sort & Fin	d 81	
	Foot		-		anmont	-	_	Number	For	rmatting *	Table *	Chulor			· ·	Colle	÷ (* (Jear *	Filter • Sele	ct *	
1911	FOIL		131	All	grimerit		131	Number	191			Styles				Cells		Eult	ing		
XV	<i>f</i> _x 50).1378																			
С	D	E	F	G	н	I	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	W	
Float S	Shar Float Pos	i Paint	SH (mm)	SL (mm)	SW (mm)	TW (g)	MW (g)	Alive	Survival	AsinSqrt	S Dead	*Notes	Delta SH (Delta SL (r	Delta SW	Delta TW	Delta MW	Bag Weigl	Float Wei	Initial B ag (Delt
3 s	v	n	68.22	47.5186	26.1132	89.28776	8.23	96	0.64	0.927295	5 32	2	21.416	16.06465	9.998	73.64776	5.346	2.88	2.68	0.9	
3 s	V	n	71.4412	50.2852	27.0186	109.124	9.31	118	0.786667	1.090682	2 19	9	24.6372	18.83125	10.9034	93.484	6.426	4.9	2.68	0.9	
3 s	v	n	66.5326	46.1636	26.112	88.036	7.37	*77 BAG R	IPPED		16*	BAG RIPPI	19.7286	14.70965	9.9968	72.396	4.486	5.24	2.48	0.88	
3 s	V	n	74.3306	50.4908	29.5276	113.448	7.26	91	0.606667	0.892891	l 17	7	27.5266	19.03685	13.4124	97.808	4.376	6.54	2.9	0.9	
3 s	V	f	77.0312	52.4636	29.085	114.394	10.7	111	0.74	1.035726	5 24	1	30.2272	21.00965	12.9698	98.754	7.816	4.9	2.66	0.9	
3 s	V	f	72.6154	51.2198	26.5378	129.74	8.79	107	0.713333	1.0058	3 19	9	25.8114	19.76585	10.4226	114.1	5.906	6.26	2.4	0.92	
3 s	V	f	74.048	49.3718	28.6388	108.498	6.46	97	0.646667	0.934254	1 22	2	27.244	17.91785	12.5236	92.858	3.576	8.04	4.62 (wate	0.9	
3 s	V	f	73.0016	50.1378	28.1334	126.538	7.21	94	0.626667	0.91346	5 26	5	26.1976	18.68385	12.0182	110.898	4.326	9.94	2.98	0.9	
3 s	V	Х	77.8254	52.73	27.8364	122.496	9.24	113	0.753333	1.051055	5 27	7	31.0214	21.27605	11.7212	106.856	6.356	6.8	2.62	0.9	
3 s	V	X							0)										0.9	
3 s	V	Х	78.53	51.8604	28.149	117.582	6.2	126	0.84	1.159279	9 10)	31.726	20.40645	12.0338	101.942	3.316	11.56	4.84	0.9	
3 s	V	X	74.455	49.9828	27.53	116.46	7.054545	112	0.746667	1.043357	7 17	7	27.651	18.52885	11.4148	100.82	4.170545	8.72	3.86	0.9	
3 s		n	69.0016	47.422	27.835	89.734	7.73	124	0.826667	1.141388	3 20)	22.1976	15.96805	11.7198	74.094	4.846	1.08	2.04	0.9	
3 s	1	n	70.4224	49.4662	26.2092	109.62	7.46	120	0.8	1.107149	23	3	23.6184	18.01225	10.094	93.98	4.576	1.4	2.86	0.9	
3 s		n	68.6534	50.3884	27.9458	94.048	6.745455	120	0.8	1.107149	9 22	2	21.8494	18.93445	11.8306	78.408	3.861455	1.2	1.94	0.9	
3 S	1	n	77.0662	56.0048	29.4302	130.794	8.5	121	0.806667	1.115535	5 11		30.2622	24.55085	13.315	115.154	5.616	1.32	1.96	0.9	
35	1	T	/1.2168	50.0616	28.8732	101.224	8.52	124	0.826667	1.141388	5 18	5	24.4128	18.60765	12.758	85.584	5.636	1.26	2.18	0.9	
35	1	1	05.1356	45.7702	27.724	101.444	/.81	*24	0.78	1.082591	*2		18.3316	14.31625	11.6088	85.804	4.926	1	1.9	0.9	
35	1	1	70 0272	57 2059	20.6	122.26	0.27	124	0.006667	1 260226	· Z	BAG KEIPI		25 04105	12 4049	116.60	6 496	1.0	2.34	0.9	
25	1	l v	13.8272	37.2938	29.0	132.20	9.37	107	0.90000/	1.200328) č	7	33.0232	23.84185	10 2004	62 704	5 706	1.38	2.12	0.88	
2 6	1	×	79 59/09	45.7632	20.4040	1/9 5920	0.08	107	0.713333	1 022501	10 3/	2	22 72000	24 51201	14 76745	122 9529	7 016	1.08	2.04	0.9	
3 c	1	×	75 05//19	52 99306	29 29267	128 9/69	2.2 7 7	110	0.70	1 098866	, 10 ; 11	2	28 250/19	24.51501	13 178/17	113 3069	1 852	1.14	6.7	0.9	
3 5	1	x	84 10959	58 25286	23.23307	153 1102	9/12	115	0.753555	1 074587	7 4	5	37 30559	26 79891	12 22296	137 4702	6 5/6	1.72	3.8 (water	0.9	
3 b	b	x	78,2518	51.6748	27.8204	108,5367	9,29	110	0.753333	1.051055	5 27	7	31.4478	20.22085	11,7052	92,89673	6.506	5	2.82	0.9	
3 b	b	x	77,6576	55,1188	30,2904	129.554	9.58	113	0.76	1.058824	1 20)	30,8536	23.66485	14,1752	113.914	6.696	3.4	2.02	0.88	
3 b	b	x	77.2486	55,1552	28,9102	127.83	9,93	117	0.78	1.082591	19	5 survival o	30.4446	23,70125	12,795	112.19	7.046	4,26	2.38	0.9	
3 b	b	x	78.506	53,4156	29.052	117.564	8.71	120	0.78	1.107149		5 Survivor O	31.702	21,96165	12,9368	101.924	5.826	4.16	3.18	0.9	
2 5	v	X	57.524	40.1154	22,4728	55.814	4,55	110	0.733333	1.028157	7 19)	17.324	12.1354	9.0528	46,414	2,69	7,06	2,66	0.9	
2 5	v	X	63.081	42.8126	23.637	65.832	5.09	114	0,76	1.058824	1 20)	22.881	14.8326	10.217	56,432	3.23	9,12	9,72	0.9	

Statistical analyses performed on growth of each metric (a=0.05)

TRIAL 1: Ploidy Results

2N

Statistical analyses performed on growth of each metric (a=0.05)

TRIAL 1: Stocking Density Results

TRIAL 1: Biofouling at Harvest

TRIAL 1: Biofouling at Harvest

98% of oysters were saleable after culling

GROWOUT TRIAL 2: Jun 2017—Nov 2017

TRIAL 2: Jun 2017—Nov 2017 Float Type and Placement

Statistical analyses performed on growth of each metric (α =0.05)

TRIAL 2: Ploidy Results

TRIAL 2: Ploidy Results

TRIAL 2: Float Design Results

TRIAL 2: Biofouling

TRIAL 2: Float Design Results

Avg BiofoulingSquare-TopWeight on Bag:17.9 ± 5.3 lbs

Square-Side 1.3 ± 0.9 lbs

TRIAL 2: Float Design Results

TRIAL 2: Anti-fouling Coating Results

No Coating

Avg Biofouling Weight on Bag $:17.9 \pm 5.3$ lbs

 14.1 ± 4.9 lbs

Square-Top

 8.6 ± 4.0 lbs

Coating B

TRIAL 2: Anti-fouling Coating Results

No Coating

Avg Biofouling Weight on Bag: 1.3 ± 0.9 lbs Coating A

 0.7 ± 0.4 lbs

Square-Side

 0.8 ± 0.3 lbs

Coating B

TRIALS: Seasonal Variation

	Diploi	d (2N)	Triploid (3N)					
	Trial 1	Trial 2	Trial 1	Trial 2				
Shell Height (mm)	76	56	83	77				
Meat Weight (g)	9	5	13	9				
Survival (%)	98	74	90	77				

Trial 1: August-April (over winter) Trial 2: April-November (over summer)

SENSORY EVALUATION

- Conducted by Dr. Charles Sims, UF Aquatic Foods Pilot Plant
- Panelists (n=75) received raw oysters to evaluate sensory attributes and consumer acceptance (blind test)
- Two Trials: May 2017 and February 2018

10

SENSORY EVALUATION

- Panelists rated attributes on a 9-point scale: 1=dislike extremely, 5=neither like nor dislike, 9=like extremely
- Data subjected to statistical analysis

	Trial 1-M	lay 2017	Trial 2-Feb 2018			
Attribute	Diploid	Triploid	Diploid	Triploid		
Meat Appearance	6.1	6.8	6.3	6.7		
Texture	6.5	6.9	6.8	7.0		
Flavor	6.4	6.8	7.0	6.8		
Acceptability	6.3	6.8	6.8	7.0		

SENSORY EVALUATION

- Results of Both Trials:

 - -No differences in flavor, texture, or preference
 - —Trend that 3N was favored over 2N as almost all attribute averages were higher than 2N
 - —Winter ratings slightly higher than summer values

Home » Oyster Farming Demonstration Project

Oyster Farming Demonstration Project Application of Triploidy to the Emergent Florida West Coast Industry

This project allows for large-scale demonstration and evaluation of an oyster breeding process to local conditions on Florida's west coast by oyster growers. The objectives are two-fold:

- 1. Document production performance, assess health, and evaluate the quality (sensory characteristics) of diploid (2N) and triploid (3N) oysters under commercial conditions, and
- Quantify the effects of different culture methods, salinity regimes, and seasonal harvests.

SCOPE OF WORK: Oysters from two ploidy types (triploids - 3N and diploids - 2N) and two seasonal spawns (spring and fall) are being provided to certified growers, who have obtained approval from DACS to culture oysters on their shellfish aquaculture leases. Eleven growers in four west coast counties (Charlotte, Franklin, Levy, and Wakulla) are using a variety of culture systems (floating bags, bottom cages, and adjustable lone lines), which allows for evaluation of site and gear interaction on ploidy type. University of Florida (UF) faculty are also culturing oysters at their research lease off Cedar Key to document growth and survival and evaluate gear types, stocking densities, and antifouling coatings.

Follow this project by viewing the news blog posted at http://shellfish.ifas.ufl.edu

UF Plants Seed in August

September 14, 2016

Triploid and diploid oyster stocks were also

planted by UF at their experimental lease

located within the Dog Island Lease Area

off Cedar Key on August 4.

Read more

Seed Provided to Growers in July

July 27. 2016 Single-set triploid ovster seed were produced by crossing Cedar Key stocks with sperm from tetraploid stocks maintained at Louisiana Sea Grant's oyster hatchery Read more

Hurricanes Impact Oyster Trials

October 7, 2016 After meandering around the Gulf of Mexico as a tropical depression, Hurricane Hermine gathered steam and headed straight for the Big Bend coast on September 2. Read more

Another component of the Oyster Culture

Demonstration Project is to document

with diploid versus triploid ovster

Read more

economic costs and benefits associated

production along the west coast of Florida.

Harvesting UF Field Trials

April 2017

Six months after seed oysters (average 25

mm in shell height) were stocked into 14

were harvested in April 2017 (12 months

from spawn). Read more

mm mesh Vexar bags (October 2016), they

November 1, 2016 This article summarizes the growth of diploid (2N) and triploid (3N) oysters cultured at the UF experimental lease within the Dog Island Lease Area near Cedar Key Read more

Harvesting Growers' Field Trials March 2017

Ten growers in four west coast counties participating in this project received cyster seed (2500 of each ploidy type, 20-22 mm in shell height) during July 2016 to grow on their leases. Read more

Consumer Evaluation of Oysters

May 2017 Oysters typically acquire their flavor from their growing environment and are frequently named after their harvest location. Read more

Sampling UF Field Trials

February 2017 A similar number of oysters provided to project participants were also cultured at the UF experimental lease off Cedar Key so that growth and survival could be documented bimonthly during growout. Read more

Next Crop of Seed Distributed

April 2017 To quantify the effects of seasonal harvests on ploidy type, several spawns using tetraploid oysters held from the spring 2016 spawn were attempted in the fall. Read more

New UF Growout Study Initiated

June 2017 The second phase of the demonstration protect evaluates the performance of diploid and triploid oysters planted in early spring, Read more

Sampling UF Field Trials September 2017

As in the first phase of the demonstration project, oysters were also cultured at the UF experimental lease off Cedar Key in the second phase. Read more

ACKNOWLEDGEMENTS

 <u>UF faculty, staff and students</u>: Dr. Charles Sims, Dr. Chuck Adams, Dr. Huiping Yang, Sara Marshall, Rod Hunt, Rusty Dame, Natalie Simon, Erangi Heenkinda
<u>Funding</u>: NOAA National Sea Grant