

Jerome La Peyre School of Animal Sciences Louisiana State University Agricultural Center

- I. Potential environmental causes of cultured diploid oyster mortalities in Gulf of Mexico (GoM): What have we learned, so far?
 - ✓ Dermo disease
 - ✓ Extreme salinity
 - ✓ Hypoxia?
 - ✓ High temperature?
 - ✓ Combination of those
- > Broodstock selection has significant impact on diploid seed tolerance to extreme salinity, hypoxia or high temperature, and resistance to dermo

FUNDING: Louisiana Sea Grant - Xue, La Peyre, 2014-2016. Marker-Assisted Selective Breeding to Produce Dermo-Resistant Eastern Oysters

& **National Science Foundation** - Kelly, La Peyre, Beseres-Pollack. 2018-2020. Testing for local adaptation and responses to multiple stressors among populations of eastern oysters inhabiting a natural salinity gradient

Causes of mortalities of GoM cultured oysters

1) Dermo disease

- ✓ Caused by parasite Perkinsus marinus
- ✓ Much knowledge
 - easy diagnostic test
- ✓ Summer & Fall mortalities
 - High temperature and salinity favor parasite proliferation
 - > 500,000 parasites / g oyster meat
- ✓ Older oysters > 1 year
- Broodstock selection impact disease progression in progeny

Causes of mortalities of GoM cultured oysters

2) Extreme Salinities

- ✓ <4; much knowledge

 >36; little studied / less frequent

 condition
- ✓ Laboratory salinity tolerance studies confirm field observations
- ✓ Mortality increases at salinities <4 and ≥38 (or lower?)
- ✓ Tolerance differs between progeny depending on wild broodstock origin
 - stocks derived from broodstocks collected in low salinity estuaries (LA) did worse at highest salinity
 - stocks derived from broodstocks collected in high salinity estuaries (TX) did worse at lowest salinity

Acclimated Stock

- Packery Channel
- Aransas Bay
- Calcasieu Lake
- △ Vermilion Bay

Causes of mortalities in GoM cultured oysters

3) Hypoxia?

- ✓ Dissolved O₂ concentration <2 mg/L
 </p>
- ✓ Not well studied
- ✓ Not much information on the presence of hypoxic waters in GoM estuaries except for Mobile Bay
- Broodstock origin has significant impact on the tolerance of diploid progeny to hypoxic waters

Causes of mortalities of GoM cultured oysters

- 4) High Temperature? (>32°C)
- ✓ Less studied

5) Combinations?

- ✓ Extreme Salinity + high temperature
- √ Hypoxia + high temperature
- ✓ Hypoxia + dermo
- Climate change impact?
 - **↑**Higher temperature
 - \uparrow Number of days with >30°C (~86°F)
 - ↑ More intense freshet events
 - ↑ Variability

Salinity 4

Salinity 20

Salinity 38

II. Explaining Unexplained triploid mortalities

- 1) Why are triploid oysters dying?
 - Investigating metabolic demand & dysfunction at the organism (Energy Budget) and sub-organism levels (cellular & molecular) during gonad development during spring and summer
- 2) Can diploid broodstock selection for triploid production decrease mortality?
- 3) Are triploid oysters less tolerant than diploid oysters to unfavorable and changing environmental conditions (e.g., salinity extremes, high temperatures, hypoxia, dermo)

Grand Isle (LSU cohort) - 2020

- ➤ NOAA Aquaculture Program La Peyre, Walton, Callam, Tiersch - 2019-2021 - "Decreasing mortalities of triploid eastern oysters in commercial grow-out in Gulf of Mexico estuaries"
- Louisiana Sea Grant Kelly, La Peyre, Callam -2020-2021 - "Identifying the molecular causes of elevated mortality in triploid oysters"
- Thanks to funding agencies, collaborators (Scott Rikard, Sandra Casas, Dani Marshall, Nick Coxe, Glen Chaplin) & graduate students (Sarah Bodenstein, Mary Collier Eastburn)

