

Oyster Research Updates

Huiping Yang

University of Florida, huiping.yang@ufl.edu

Oyster Tetraploid Induction

Great Thanks to
The Gulf States Marine Fisheries Commission
The Florida Shellfish Industry

Year I: Jan 1, 2017 – June 30, 2018

Goal: produce chemically induce triploids

Year II: March 1, 2018 – Feb. 28, 2019

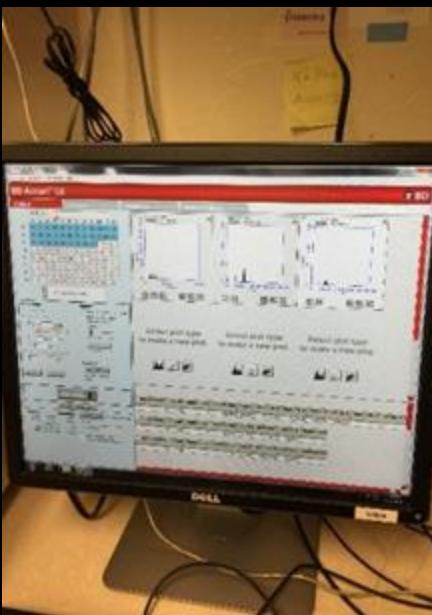
Goal: Produce tetraploid founders by using $(3n \times 2n)$

Now: One proposal is pending.

Goal: Establish an extension program - tetraploid production


Year I: Summary

Broodstock	Labelling	Number	Triploid (%) (Date)	Location
Cedar Key	2017CK1	5,000	54% (11/08/2017)	Southern Cross Sea Farm
Wakulla	2017WA1	~20,000	76% (11/07/2017)	Bay Shellfish Inc.
			64% (10/31/2017)	Oyster Mom Inc.
			54% (10/04/2017)	Cedar Key Seafarms
				Southern Cross Sea Farms
Cedar Key	2017CK2	17,766	62% (10/23/2017)	Cedar Key Seafarms
				Pensacola Oyster Company
				Northwest Gulf Seafood Farms



Protocol for Ploidy Determination

- Using propidium iodide (PI) staining with flow cytometry.
- Larvae: pooling sample
- Spat: whole soft tissue
- Adult: Gill (kill the oysters) or Hemocyte (Biopsy oysters)

PHASE II: Summary (2018/2019 spawning season)

Germplasm Cryopreservation Research

- 1) Streamline and improve the existing protocols, and establish sperm quality control criteria**
- 2) Establish a sperm bank of the Gulf Wild Oyster Resources**
- 3) Achieve the males in each generation for breeding purpose**
- 4) Preserve the strains/lines to be created in this project**

Previous Research Updates

[Download PDF](#)[Share](#)[Export](#)

ELSEVIER

Aquaculture

Volumes 344–349, 21 May 2012, Pages 223–230

High-throughput sperm cryopreservation of eastern oyster *Crassostrea virginica*

Huiping Yang ^a , E Hu ^a, Rafael Cuevas-Uribe ^a, John Supan ^b, Ximing Guo ^c, Terrence R. Tiersch ^a[Show more ▾](#)<https://doi.org/10.1016/j.aquaculture.2012.03.018>[Get rights and content](#)[SECTIONS](#)[PDF](#) [TOOLS](#) [SHARE](#)**Aquaculture Research**

Original Article

Production of inbred larvae through self-fertilization using oocytes and cryopreserved sperm from the same individuals after sex reversal in eastern oyster *Crassostrea virginica*

Huiping Yang , Yan Wang, Ximing Guo, Terrence R Tiersch

First published: 02 January 2014 | <https://doi.org/10.1111/are.12371> | Citations: 2

Establish a sperm bank for the Gulf oyster resources

Targets: Wild oysters, n = 50 from each location.

1) Oyster resources and Genetic Information

Number, collection location, water quality parameters

2) Biological data

Body sizes, body weight, and tissues for genetic background.

3) Fresh sperm quality

Sperm amount, concentration, motility, other quality parameters

4) Cryopreserved sperm

Straw number, labelling, date, and storage locations

5) Post-thaw sample quality

Motility, fertility, and FCM assay parameters.

6) Inventory record.