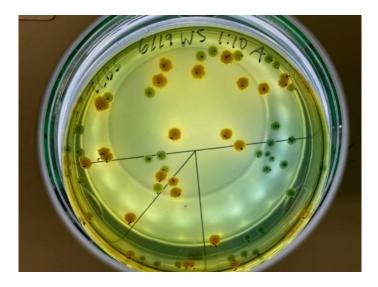
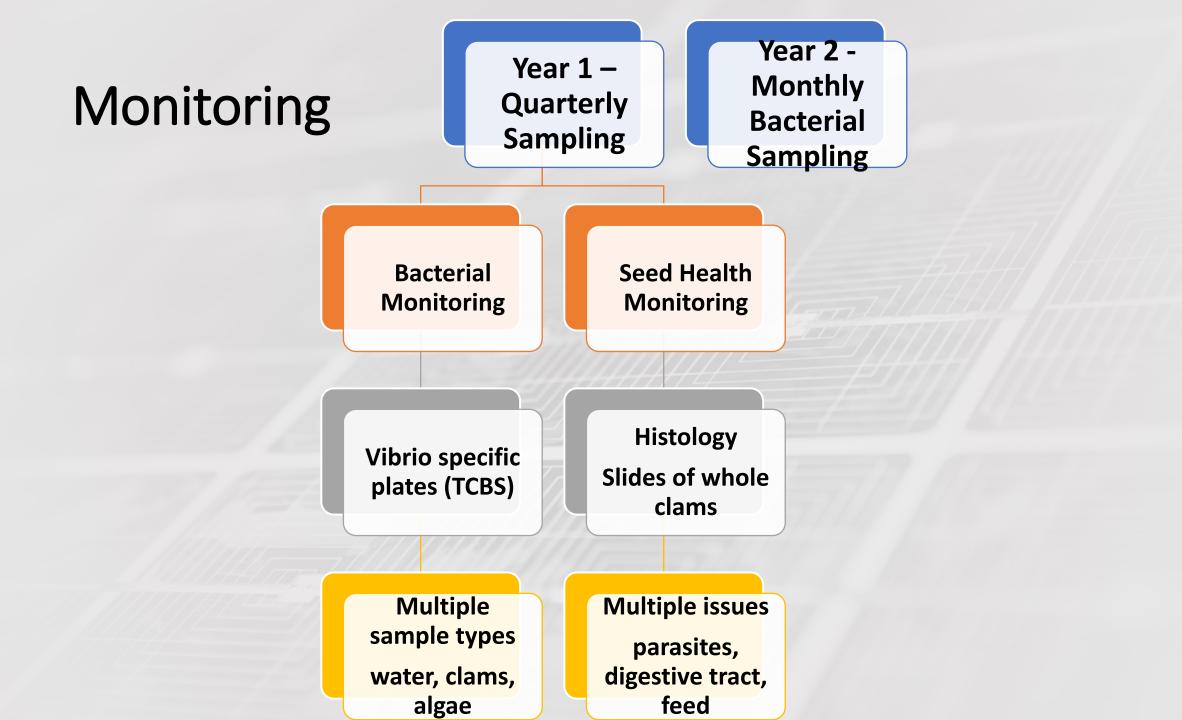
Bacterial and Seed Health Issues in Florida Hatcheries and Nurseries

FLORIDA ATLANTIC UNIVERSITY

Factors Affecting Clam Health

- Bacteria
 - Primary concern in clam hatcheries
 - Impacts movement and feeding ability
- Parasites
 - An additional concern in clam nurseries
- Water Quality
 - Temperature affects bacterial populations
 - Salinity affects parasitic populations
 - High ammonia and low dissolved oxygen are stressors
 - Affects ability to fight infection


Bacterial Monitoring


- Bacteria are always present
 - Most are necessary or helpful
 - Some are opportunistic and cause disease when present in high numbers
 - Vibrio = bacteria of highest concern in marine aquaculture
- TCBS media is Vibrio specific
 - Pathogens appear as blue/green colonies
 - Non-pathogens appear as yellow colonies

Routine monitoring of "hotspots"

- Areas that should be Vibrio free
 - algae cultures, source water

Bacterial Monitoring: Samples Collected

Year	Total	Water	Clams	Algae
Year 1	162	89	40	33
Hatchery	136	78	25	33
Nursery	26	17	15	0
Year 2	185	107	61	17
Hatchery	178	105	56	17
Nursery	7	2	5	0

Locations with high Vibrio counts in Florida Hatcheries

Year	1	Year	Year 2**		
Larvae	70%	Larvae	40%		
Larval Tanks	60%	Larval Tanks	100%		
Broodstock Tanks	100%	Broodstock Tanks	ND		
Algae	45%	Algae	ND		
Source/Reservoir*	30%	Source/Reservoir*	60%		

* Generally higher levels seen in Surface compared to Well Water

**Too few samples were submitted from brood tank water or algae cultures to determine patterns

Seasonal Changes in Hatchery Vibrio Populations

Year 1 – Winter to Spring			Year 1 -	Year 1 - Spring to Summer		
Location	% Increase	% Decrease	Location	% Increase	% Decrease	
Larvae*	60%	-	Larvae	-	30%	
Larval Tanks*	60%	-	Larval Tanks	-	30%	
Brood Tanks	45%	30%	Brood Tanks	-	15%	
Algae	15%	15%	Algae	45%	-	
Source/Reservoir**	15%	-	Source/Reservoir	30%	15%	

Low Vibrio concentrations were seen in samples collected in Winter

* A corresponding increase in pathogenic Vibrios was noted at some locations

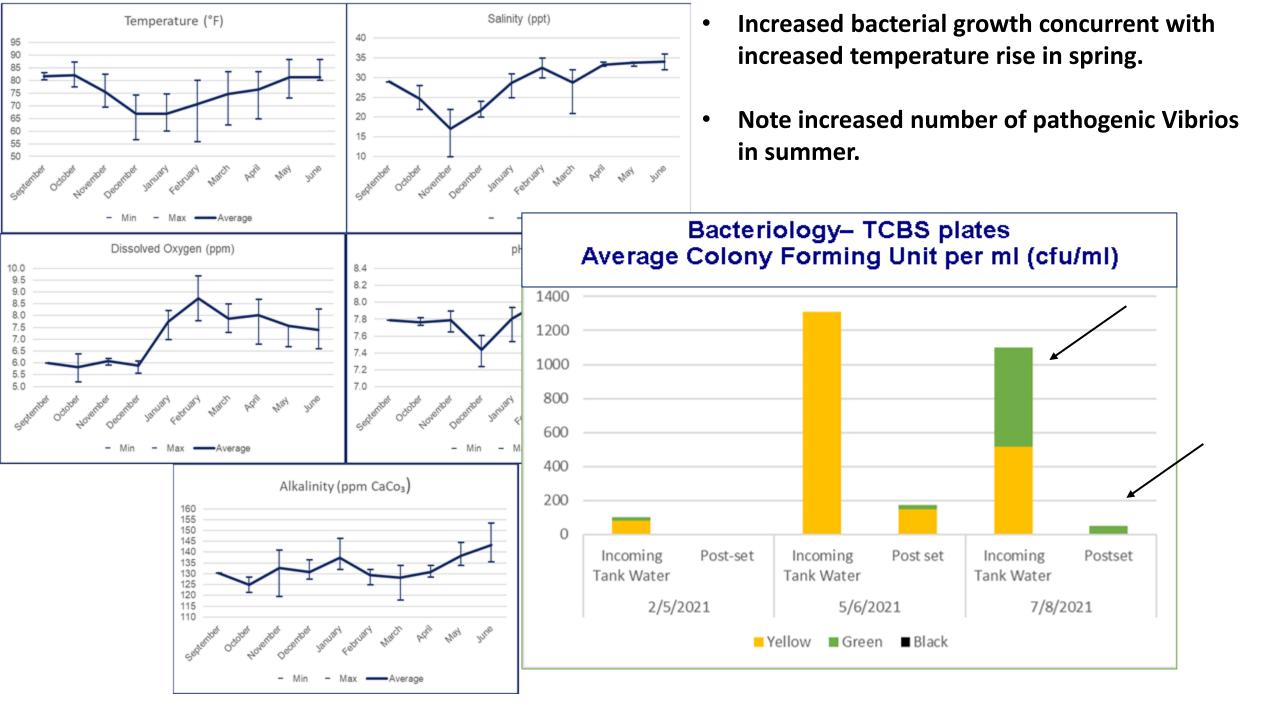
Seasonal Changes in Hatchery Vibrio Populations

Year 2 – Winter to Spring			Year 2 – Spring to Summer		
Location	% Increase	% Decrease	Location	% Increase	% Decrease
Larvae**	40% (60%)	20% (-)	Larvae**	- (-)	75% (30%)
Larval Tanks**	80% (60%)	20% (-)	Larval Tanks	25% (-)	50% (30%)
Source/Reservoir**	20% (30%)	- (-)	Source/Reservoir**	25% <mark>(30%)</mark>	50% (15%)

Low Vibrio concentrations were generally seen in samples collected in Winter

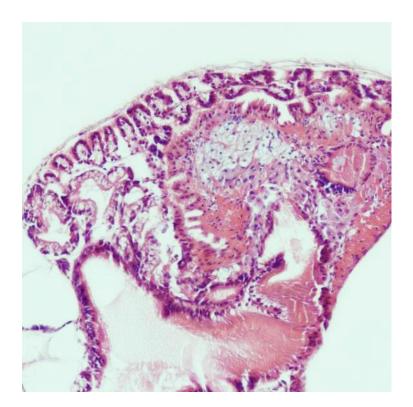
** A corresponding increase in pathogenic Vibrios was noted at some locations For Source water, this was <u>only</u> seen with <u>surface</u> water

Purple = Y1 for comparison

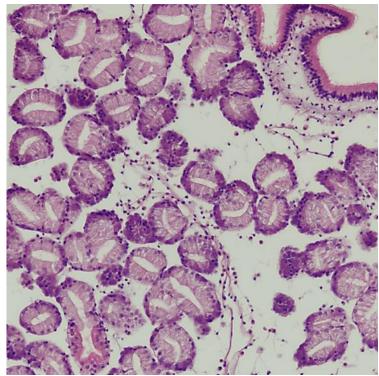

Seasonal Changes for Vibrio in Nurseries (Year 1 only)

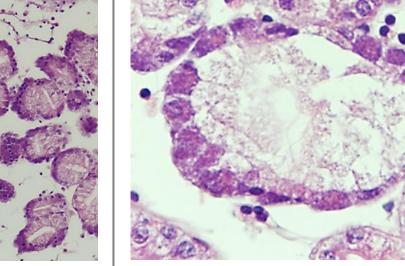
Winter to Spring				Spring to Sumn	ner*
Location	Increase	Decrease	Location	Increase	Dec
Post-set	67% (60%)	- (-)	Post-set	- (-)	50%
Wellers	33% (60%)	- (-)	Wellers	75% (-)	- (3

Low Vibrio concentrations were seen in samples collected in Winter


* Increase in pathogenic Vibrios in one location

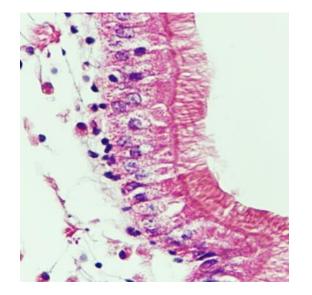
Purple = Hatchery's in Y1

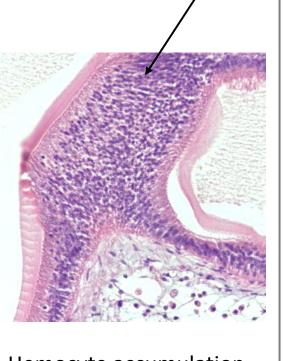



Age/size P	5109 111/18/2020 ost-set	Seed Heath Patho	logy Report		Cl Facility IDG109 Date sampled06/09/2021 Age/size +2 Post-set (tank 2), Routine X Other		ology Report		Clam Seed Health Report Example: • Note increase in negative
Routine	X Other	Histopatholog				Histopatholo	ν		condition in
Hemocyte acc Necrotic lesio Granulomas_	verticula cumulation ons lation	PrevalenceNA	Location		Condition *Digestive Diverticula Hemocyte accumulation Necrotic lesions Granulomas Tissue degradation	PrevalenceNA	Location	Degree (rank or %) 1 min (1)_ min	summer
Fungi **Protozoa **Metazoa	asites, etc.				Bacteria, parasites, etc. Bacteria Fungi **Protozoa **Metazoa Other		dig tract		
Summary Co Healthy seed, look healthy.	omments no pathogens, or patho	logies present; a few d	ead clams present but t	hose that were alive	Summary Comments Healthy seed, >75% feeding. One surrounded by hemocytes. A fift small number had some tissue d missing cells and 1 with some ba	h of the samples had conc isintegration. Two clams h	retions in the digestive div	erticula, and a	

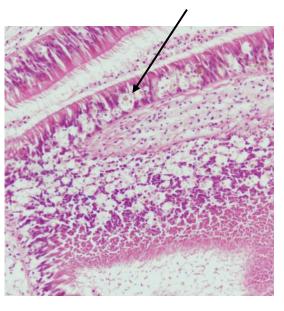
Histopathology: Condition

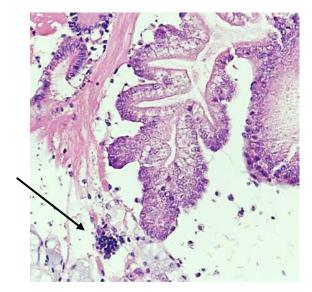
800-micron clam



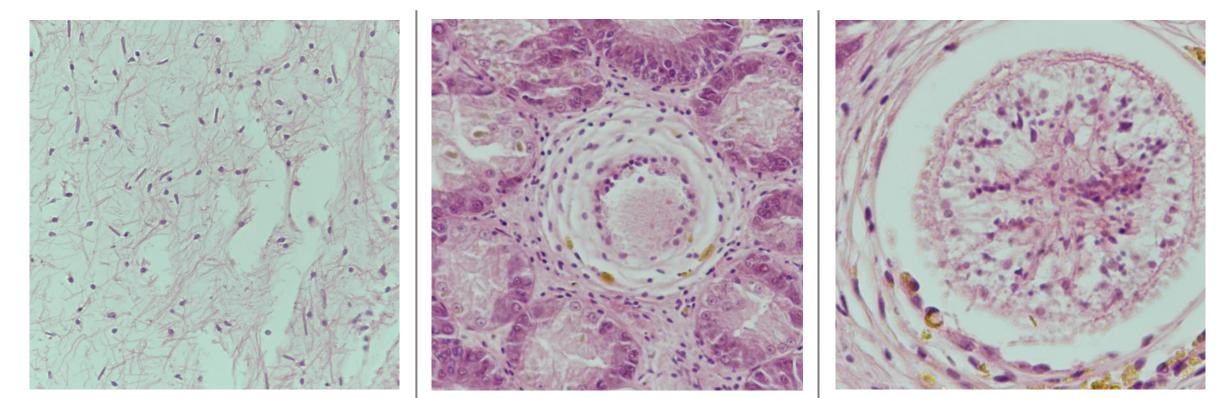

Digestive Diverticula - normal

Digestive gland tubule disintegration


Histopathology: Condition


Normal digestive tract

Hemocyte accumulation



Concretions

Developing granuloma Hemocytes attacking bacteria

Histopathology: Bacteria and Parasites

Filamentous bacteria, hemocytes

Granuloma, hemocytes

Metazoan parasite

Hatchery Seed Health

Year 1 – Winter to Spring

Year 1 – Spring to Summer

Condition	Increase	Decrease	Condition	Increase	Decrease
Hemocytes	60%	-	Hemocytes	-	20%
Necrosis/ Granulomas	20%	-	Necrosis/ Granulomas	-	20%
Tissue Degradation	80%	-	Tissue Degradation	-	40%
Pathogens			Pathogens		
Bacteria	60%	-	Bacteria	40%	20%
Protozoans	-	-	Protozoans	20%	-
Metazoans	20%	-	Metazoans	40%	20%

• Winter – 70% had no issues

- Spring 20% had no issues
- Summer 40% had no issues

Hatcheries that used surface water tended to have higher levels of clam digestive tubule destruction

Concretions = 20% winter, 33% spring and summer

Hatchery Seed Health

Year 2 – Winter to Spring

Year 2 – Spring to Summer

Condition	Increase	Decrease
Hemocytes	- (60%)	20% (-)
Necrosis/ Granulomas	50% (20%)	- (-)
Tissue Degradation	- (80%)	20% (-)
Pathogens		
Bacteria	33% (60%)	- (-)
Protozoans	33% (-)	- (-)
Metazoans	- (20%)	- (-)

• Winter – 40% (70%) had no issues

Condition	Increase	Decrease
Hemocytes	- (-)	- (20%)
Necrosis/ Granulomas	- (-)	33% (20%)
Tissue Degradation	- (-)	- (40%)
Pathogens		
Bacteria	33% (40%)	- (20%)
Protozoans	- (20%)	33% (-)
Metazoans	33% (40%)	- (20%)

- Spring 20% (20%) had no issues
- Summer 40% (40%) had no issues
 Concretions = 67% Spring & Summer

Nursery Seed Health

Year 1 – Spring to Summer

Condition	Increase	Decrease	Condition	Increase	Decrease
Hemocytes	75% (60%)	25% (-)	Hemocytes	60% (-)	20% (20%)
Necrosis/ Granulomas	25% (20%)	25% (-)	Necrosis/ Granulomas	20% (-)	20% (20%)
Tissue Degradation	50% (80%)	- (-)	Tissue Degradation	20% (-)	- (40%)
Pathogens			Pathogens		
Bacteria	100% (60%)	- (-)	Bacteria	40% (40%)	20% (20%)
Protozoans	- (-)	- (-)	Protozoans	40% (20%)	- (-)
Metazoans	25% (<mark>20%</mark>)	- (-)	Metazoans	40% (40%)	- (20%)

• Winter – 60% (70%) had no issues

- Spring 20% (20%) had no issues
- Summer 40% (40%) had no issues

No concretions in any samples!

Purple = Hatchery's in Y1

Nursery Seed Health

Year 2 – Winter to Spring

Year 2 – Spring to Summer

Condition	Increase	Decrease	Condition	Increase	Decrease
Hemocytes	- (75%)	25% <mark>(25%)</mark>	Hemocytes	40% (60%)	- (20%)
Necrosis/ Granulomas	25% (25%)	- (25%)	Necrosis/ Granulomas	- (20%)	- (20%)
Tissue Degradation	25% (<mark>50%</mark>)	50% (-)	Tissue Degradation	40% (20%)	- (-)
Pathogens			Pathogens		
Bacteria	75% (100%)	- (-)	Bacteria	20% (40%)	20% (20%)
Protozoans	50% (-)	- (-)	Protozoans	20% (40%)	20% (-)
Metazoans	20% (25%)	- (-)	Metazoans	- (40%)	20% (-)

• Winter – 40% (60%) had no issues

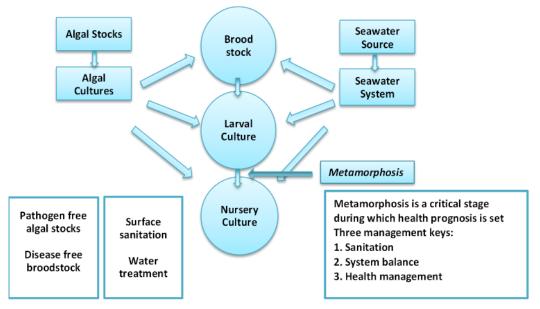
• Spring – 40% (20%) had no issues

• Summer – 20% (40%) had no issues

Concretions in 25% of spring samples

Purple = Y1 for comparison

Recommendations for Hatcheries


- Where to test for Vibrio
- When to test
- What's acceptable

Upper and lower acceptable Vibrio ranges

Location	Total Vibrios CFU/mL	Non-pathogenic CFU/mL (yellow)	Pathogenic CFU/mL (green)
Algae cultures	<10	<10	0
Incoming water	<10	<10	0
Tank Culture Water	1000 - 10,000	1000 - 10,000	10 - 100
Larvae/Post- set	10 - 100	10 - 100	0

*Expect to see highest number in broodstock tank water

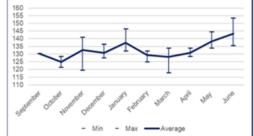
Identify bacteriological problems and how to locate them by process of elimination and systematic sampling:

Schematic diagram of intensive hatchery and nursery production of molluscan shellfish with notes regarding health management. *Adapted from Elston & War (2003).*

Emergency Samples

- Additional samples submitted during mortality events
- Y1 = 5 emergency samples
 - Jan = 1, Feb = 1, Mar = 3
 - All samples showed high levels of *Vibrio*, including pathogenic *Vibrios*
 - Histological confirmation
 - Vibrio populations in tank water were substantially lower than in clams
 - Both facilities used surface water
 - Algae and incoming water were tested to locate source in <u>one</u> facility
 - Incoming water was the culprit
- Y2 = 3 emergency samples
 - Mar = 1, Apr = 1, Sept = 1
 - Vibrio bacteria was <u>NOT</u> the cause of mortalities in 2 of the 3 cases!

Vibrio Counts (CFU/mL)					
Source	Total	Yellow	Green		
Larvae 1	93200	31200	62000		
Tank		/ \			
water 1	1425	365	1060		


Histopathology

Condition	Prevalence	Location	Degree (rank or %)
*Digestive Diverticula	NA		3-4
Hemocyte accumulation			
Necrotic lesions			
Granulomas			
Tissue degradationyes	>75%	_Digestive tubules_	>7%
Bacteria, parasites, etc.	Prevalence	Location	Degree
Bacteria	26%	*CT, DT, DD	Mod
Fungi			
**Protozoa			
**Metazoa			
Other			
	. <u> </u>		

*CT=connective tissue, DT= digestive tract, DD= digestive diverticula

Summary and Recommendations

Temperature (°F) Salinity (ppt) 85 80 50 Dissolved Oxygen (ppm 9.5 8.5 Alkalinity (ppm CaCo₃)

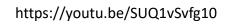
- Vibrio load increases with higher temperatures
- Parasite load increases with higher salinities
- Low DO & high ammonia causes additional stress
 - No associations were noted in this study
- Bacterial and parasitic problems winter and in spring

• Hatchery operators

- Lower stress
- Temperature control spring & summer
- Bacterial testing of "hot spots" spring & summer
- Nursery operators
 - Prayer, meditation, a cold beverage?

Additional Resources

• Video


VouTub

Vibrio Sampling Techniques and Tips for Clam Hatcheries AU Harbor Branch Oceanographic Institute

- Sampling
- Media prep
- Plating
- Interpretation

- Handouts
 - Prevention and Management
 - Plating Instructions
 - Supply list
 - Interpretation

ARBOR BRANCH FLORIDA ATLANTIC UNIVERSITY

100-1000 µ

USTRASTICATION HARDING