Cedar Key Aquaculture Workshop CLAMMRS Project

Shirley Baker¹, Ed Phlips¹, Clay Montague², Sherman Wilhelm³, Kal Knickerbocker³, Derk Bergquist⁴

¹University of Florida, Department of Fisheries and Aquatic Sciences

 ² University of Florida, Environmental Engineering Sciences
 ³ Florida Department of Agriculture and Consumer Services, Division of Aquaculture

⁴ South Carolina Department of Natural Resources

Initiative for Future Agriculture and Food Systems

Long-term goal

Enhance sustainable development of open-water clam farming through adoption of remote sensing technologies

Objectives

- Provide near real-time water-quality data
- Create database of water-quality conditions
- Determine impact of food resources on clam growth/survival
- Fill gaps in knowledge of Florida clam physiology and response to stressors
- Simulate farmed clam growth and survival

Water quality monitoring

Oxygen Corrections

Monitoring challenges

MaintenanceQA/QC process

Temperature

Database

> 1.2 M data points Details of variability

Database

2003-2005 Cause of Loss: Oxygen depletion and salinity \$2.0 M of \$3.2 M total indemnity

Food Resources

Physiological response to stress

Temperature Tolerance of Mercenaria mercenaria 13-18mm

Simulation of Farmed Clam Growth and Survival

Model inadequate

- Knowledge of clams under farmed conditions inadequate
- Info needed:
 - Response of clams to crowding
 - Effects of clams on microenvironment
 - Long-term simultaneous records of harvest and environmental data

Simulation: Experiments

- Field experiments of farming methods on actual leases
- Tank experiments simulating lease conditions
 - Better control, more precise monitoring, faster results than field
- Laboratory experiments
 - Best control, soonest results, may require field verification
- Model useful for field verification of lab results

Simulation: Harvest monitoring

Experimental planting on leases

- Plant on leases set aside for this purpose rather than by scrutinizing activities on randomly chosen leases
- Voluntary cooperation and interviews may give misleading results
- Total harvest record may be useful if complete

Model process converges over the long term

- Model illustrates capability of current knowledge to successfully predict
- Most common outcome is failure to predict what is already known to be true
- Process always identifies specific information gaps that must be filled
- Model-directed experiments and field data are required
- Model is then modified to incorporate the new information
- Validation: model harvest must ultimately be compared to real harvest
- Eventually the process converges more reliable predictions are produced

Simulation: Summary

- Results of model-directed experiments will benefit the entire clam farming community as the process converges
- The benefit of the modeling process may exceed the benefits achieved from the model itself as long as the process continues

Work in Progress

- "Crunch" > 1.2 M numbers
- Complete analyses of phytoplankton biomass/composition and clam growth/survival
 Continue model-building process
 Continue to fill gaps in clam physiology/ecology
 Continued monitoring...

