Cedar Key Aquaculture Workshop Enhancing Production of Cultured Clams in Florida by Triploidy John Scarpa¹, Shirley Baker², Leslie Sturmer³, Chuck Adams⁴

 ¹Harbor Branch Oceanographic Institution
 ² University of Florida, Department of Fisheries and Aquatic Sciences
 ³ University of Florida, Cooperative Extension Service

4 University of Florida, Department of Food and Resource Economics

Hypothesis

 Hard clam mortalities from summer stressors can be reduced by creating sterile clams through the basic breeding technique of triploidy

Triploidy: Three sets of chromosomes

Why triploidy?

- Need for hardier clam strains
- Triploid organisms divert energy from reproduction to energy storage and growth
 Triploidy has been used in PNW oyster

aquaculture

Specific objectives

Create replicate diploid/triploid families
Compare growth & survival during grow-out
Compare physiological responses to stress
Examine economics

Polar Body 2 release

Flowcytometry output

Cytological and Flow-Cytometric Data from Triploid Induction Experiments

Trial #, treatment		Cytologica				
		Pre- fertilized	Pre-PBI	Pre- РВП	Post- PBII	Triploid (%)
1	PBI	55	50	7	43	39
	PBI		3	30	67	0
2	РВІ РВП	5	83	2	3	0
			23	77	0	0
3	РВІ РВП	1	100	0	0	0
			0	100	0	0
4	РВІ РВП	5	90	10	0	93
			0	44	56	33
5	РВІ РВП	0	85	0	0	33
			28	72	0	83
	PBI		55	0	21	77
6	РВП	6	56	39	5	86
7	РВІ РВП	5	41	0	1	48
			66	26	8	57
0	PBI		69	2	8	26
8	PBII	4	36	48	13	69

Susan Laramore and Eman El-Wazzan Florida Tech grad students

Growth Study w/Juveniles

Growth (%) in shell length (A) and live weight (B) of juvenile triploid *Mercenaria mercenaria*

Leslie Sturmer, grow-out

Clam samples

Hurricane Charley

Mean values of different parameters measured for PB2 triploid clams cultured in Cedar Key

	Diploids			Triploids			T-test
	N	Mean	SD	Ν	Mean	SD	Signif.
Shell Length	32	23.4	± 3.5	13	19.7	± 3.2	0.002
Shell Width	32	11.3	± 1.7	13	9.3	± 1.5	0.000
Live Weight	32	3.33	± 1.32	13	1.97	± 0.85	0.001
Dry Meat Weight	18	0.104	± 0.039	7	0.068	± 0.026	0.034
Condition Index	18	5.6	± 0.5	7	6.6	± 0.5	0.000

Four hurricanes hit Florida in 2004 and destroyed 80% of all clams planted for the study. Data presented is from only one group of clams cultured in Cedar Key and sampled in December 2004. Triploid clams were estimated at 42-70% before the hurricanes, but only 29% after. Triploid clams were significantly smaller for all parameters measured except condition index. Histological analysis indicated 50% of diploid clams had spawned, whereas 100% of triploids had no gonad.

Laboratory challenges

Temperature: 90°F Salinity: 10ppt, 25ppt, 40 ppt Oxygen: Normoxic or Hypoxic

Survival & burial

2 size classes

Survival – 10 ppt and 40 ppt

10 ppt

40 ppt

At salinity extremes, triploid clams have no advantage over diploid clams

Survival – 25 ppt

 Triploidy may increase survival under hypoxic conditions at normal salinities

Work in Progress

Replicate PBII triploids and sibling diploids were produced again for ongoing field studies
 Compare energy budgets (metabolic rates, feeding rates) of triploid and diploid clams
 Economic survey - Chuck Adams, UF
 Expect to be completed by end of this year