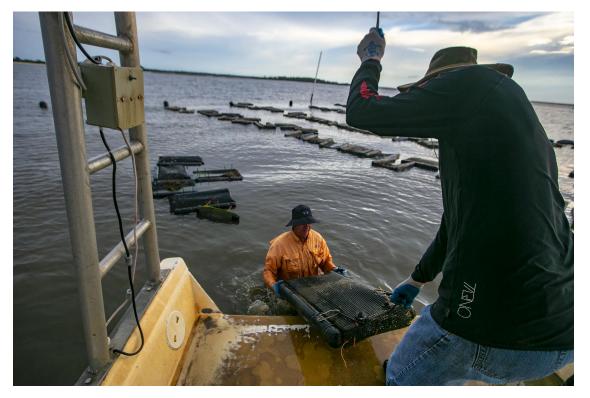
Gear Type Comparison for Off-bottom Oyster Aquaculture in Florida, USA

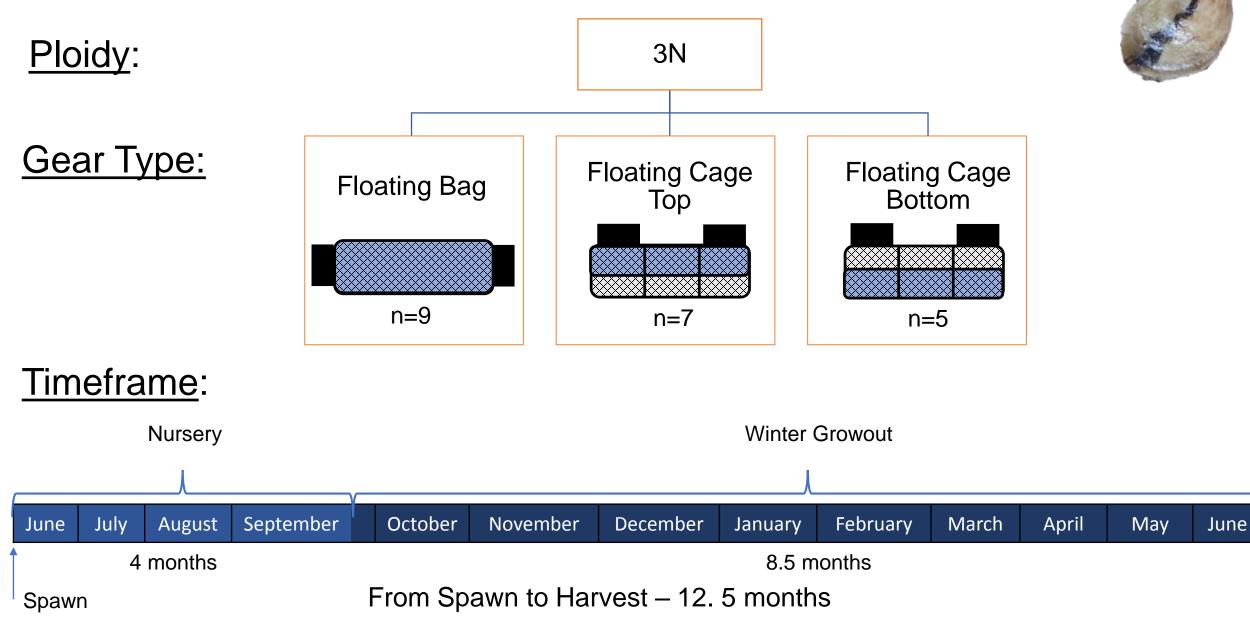

Natalie Simon, Leslie Sturmer, Reggie Markham University of Florida / IFAS Shellfish Aquaculture Extension Cedar Key, FL

Ellis Chapman Louisiana State University Baton Rouge, LA

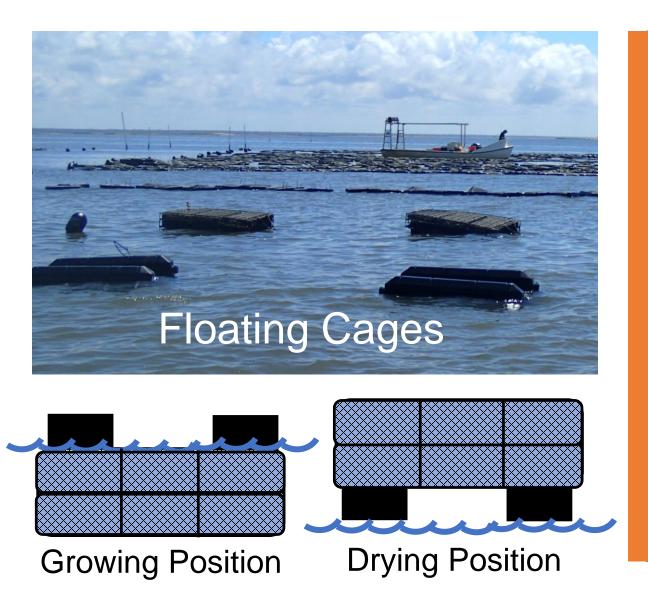
Biofouling is a major concern for the production of off-bottom cultured oysters

Objectives

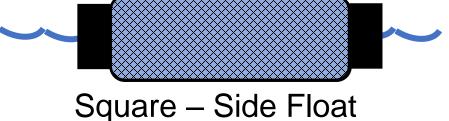
- 1. Document performance of triploid Eastern Oysters *Crassostrea virginica* using different off-bottom culture methods
- 2. Evaluate effects of biofouling control methods in Southern growing conditions


Comparing Off-Bottom Oyster (Crassostrea virginica) Aquaculture Production in the Northern Gulf of Mexico on Biofouling

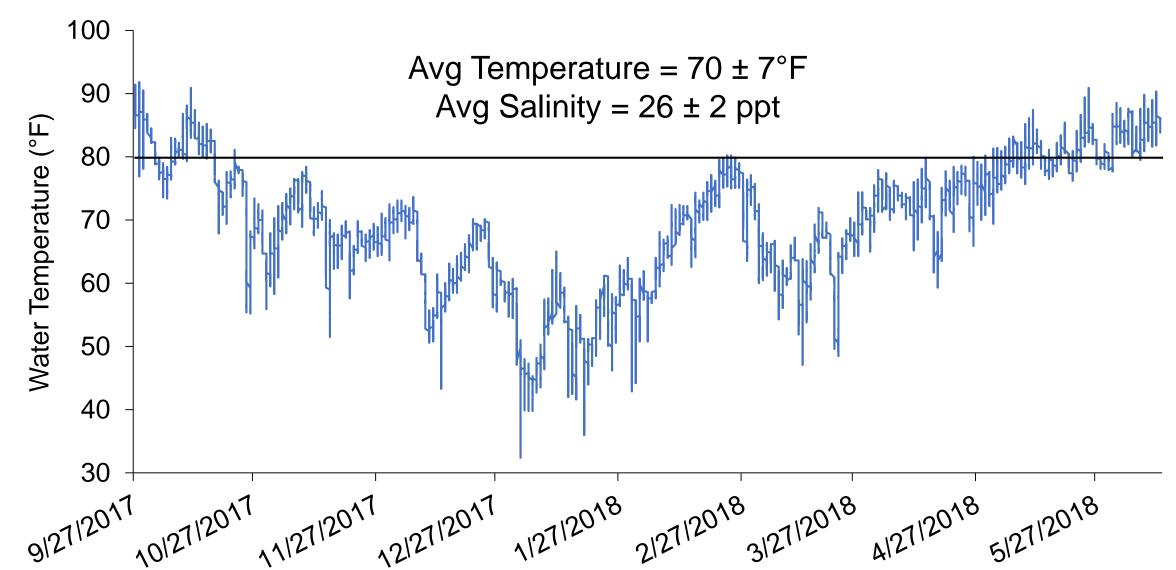
Ellis Chapman


Oyster South: Oyster Aquaculture In the Southern USA Friday, March 8 3:15pm




Growout: Experimental Design

Gear Type and Float Placement



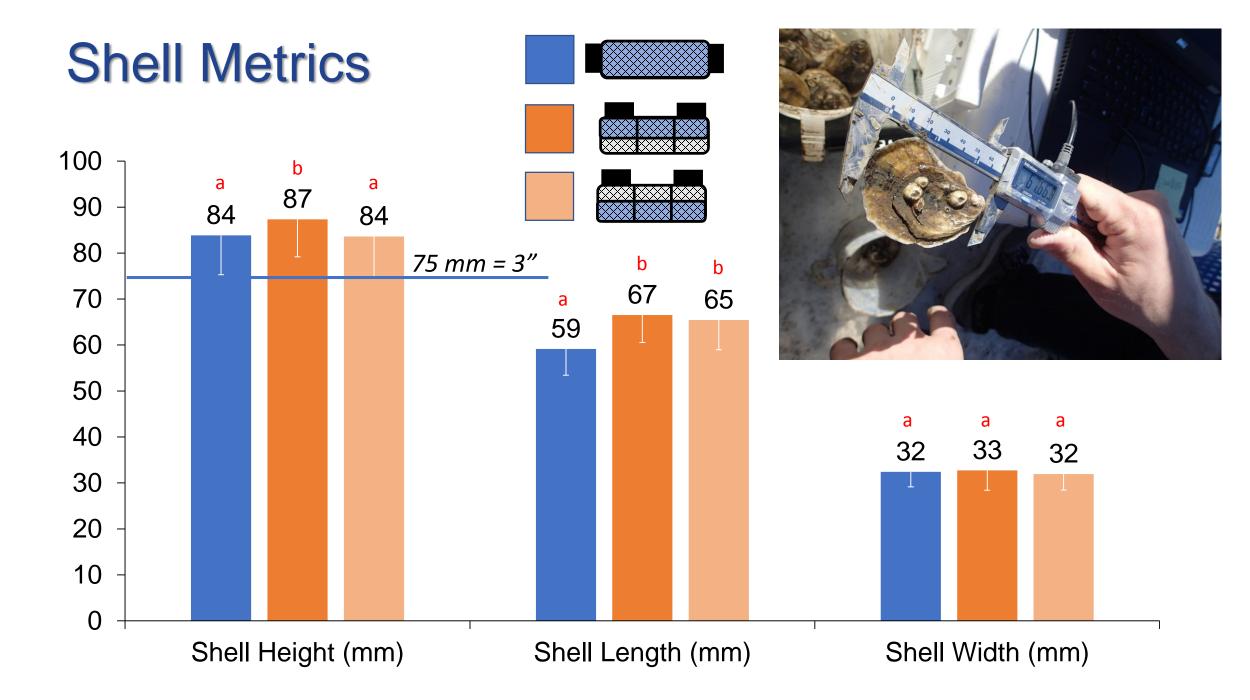
Stocking and Biofouling Control

- Deployment size: SH 52mm, SL 39mm, SW 27 mm
- Stocking density: 150 oysters / bag
- 14 mm uncoated Vexar bags
- Weekly Flipping
 - Floating Cage: Air dried exposure for 24 hrs, flipped back
 - Floating Bag: Does not require "Unflipping"

Growing Temperatures, Sept 2017- June 2018

Variables Measured

- Survival
- Shell Metrics
 - Shell height
 - -Shell length
 - -Shell width
- Weight Metrics
 Meat (wet)
 - Meat (dry)
- Condition Index
- Biofouling Weight


Ready

- Bags
- —Oysters

	5.								Fall Sp	awn_Harves	t_11.29.17.cs	sv - Excel							🛕 Cyr,C	arter S 🖸	E —	đ
Ins	sert	Page Layout	Formulas	Data	Review	View	Help A	CROBAT	♀ Tell m	e what you v	vant to do											
	Calib	ri y	• 11 • A	▲ = =	- % -		n Text	Gene	ral	-			Normal	Bad		^ E			AutoSum 👻	A _v		
											ii≓ ≓			_		T		**** 🛛 🕁 F	-ill +	Z		
ainter	В	I <u>U</u> -	- 👌 - 🗛	* = =		🗄 Mer	ge & Center	- \$ -	% *		nditional F matting •		Good	Neut	ral	The Insert	Delete Fo	💡 🔷 🔿	01	Sort & Find Filter • Sele		
		Font		G.	Alic	nment		G.	Number	5	macing	Tuble -	Styles				Cells		Editi			
																				-		
	×	f _x	50.1378																			
	С	D	E	F	G	н	Ι	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	w	х
idy		Shar Float P	osi Paint	SH (mm)			TW (g)	MW (g)			AsinSgrt 9		*Notes								Initial Bag D	
3	3 s	v	n	68.22	47.5186		89.28776	8.23			0.927295				16.06465		73.64776	5.346		2.68	0.9	
3	3 s	v	n	71.4412	50.2852	27.0186	109.124	9.31	118	0.786667	1.090682	2 1	9	24.6372	18.83125	10.9034	93.484	6.426	4.9	2.68	0.9	
3	3 s	v	n	66.5326	46.1636	26.112	88.036	7.37	*77 BAG R	IPPED		16*	BAG RIPP	19.7286	14.70965	9.9968	72.396	4.486	5.24	2.48	0.88	
3	3 s	v	n	74.3306	50.4908	29.5276	113.448	7.26	91	0.606667	0.892891	1	7	27.5266	19.03685	13.4124	97.808	4.376	6.54	2.9	0.9	
3	3 s	v	f	77.0312	52.4636	29.085	114.394	10.7	111	0.74	1.035726	j 2	4	30.2272	21.00965	12.9698	98.754	7.816	4.9	2.66	0.9	
3	3 s	v	f	72.6154	51.2198	26.5378	129.74	8.79	107	0.713333	1.0058	3 1	9	25.8114	19.76585	10.4226	114.1	5.906	6.26	2.4	0.92	
3	3 s	v	f	74.048	49.3718	28.6388	108.498	6.46	97	0.646667	0.934254	2	2	27.244	17.91785	12.5236	92.858	3.576	8.04 /	4.62 (wate	0.9	
3	3 s	v	f	73.0016	50.1378	28.1334	126.538	7.21	94	0.626667	0.91346	j 2	6	26.1976	18.68385	12.0182	110.898	4.326	9.94	2.98	0.9	
3	3 s	V	х	77.8254	52.73	27.8364	122.496	9.24	113	0.753333	1.051055	j 2	7	31.0214	21.27605	11.7212	106.856	6.356	6.8	2.62	0.9	
3	3 s	v	x							0											0.9	
3	3 s	v	х	78.53	51.8604	28.149	117.582	6.2	126	0.84	1.159279) 1	0	31.726	20.40645	12.0338	101.942	3.316	11.56	4.84	0.9	1
3	3 s	v	х	74.455	49.9828	27.53	116.46	7.054545	112	0.746667	1.043357	/ 1	7	27.651	18.52885	11.4148	100.82	4.170545	8.72	3.86	0.9	
3	3 s	I	n	69.0016	47.422	27.835	89.734	7.73	124	0.826667	1.141388	3 2	0		15.96805	11.7198	74.094	4.846	1.08	2.04	0.9	
	3 S	1	n	70.4224	49.4662	26.2092	109.62	7.46			1.107149				18.01225	10.094	93.98	4.576	1.4	2.86	0.9	
3	3 S	1	n	68.6534	50.3884	27.9458		6.745455	120		1.107149		2		18.93445	11.8306		3.861455	1.2	1.94	0.9	
	3 s	1	n	77.0662	56.0048	29.4302	130.794	8.5		0.806667					24.55085	13.315	115.154	5.616		1.96	0.9	
	3 s	1	f	71.2168	50.0616	28.8732	101.224	8.52		0.826667					18.60765	12.758	85.584	5.636		2.18	0.9	
	3 S	1	f	65.1356	45.7702	27.724	101.444	7.81		0.78	1.082591				14.31625	11.6088	85.804	4.926		1.9	0.9	
	3 s	1	f						*24			*2		PED MANY					1.6	2.34	0.9	
	3 5	1	f	79.8272	57.2958	29.6	132.26	9.37		0.906667			8		25.84185	13.4848	116.62	6.486		2.12	0.88	
	3 5	1	X	62.4838	43.7852	26.4046	79.424	8.68		0.713333					12.33125	10.2894	63.784	5.796		1.88	0.9	
	35	1	X		55.96776			9.9			1.082591				24.51381			7.016		2.04	0.9	
	3 s	 	X		52.99306			7.72		0.793333					21.53911			4.836		6.7	0.9	
	3 S	b	X		58.25286			9.43		0.773333			6		26.79891			6.546		3.8 (water		
	3 b 3 b	b	X	78.2518 77.6576	51.6748 55.1188	30.2904	108.5367 129.554	9.39 9.58		0.753333	1.051055			31.4478 30.8536		11.7052	92.89673 113.914	6.506 6.696		2.82 2.4	0.9	
	3 D 3 D	b	X	77.2486	55.1188	28.9102	129.554	9.58			1.058824		u 5 survival o		23.00485	14.1752	113.914	7.046		2.4	0.88	
	3 D 3 b	b	x	78.506	53.4156	28.9102	127.83	9.93			1.107149		5 survivai o 5	30.4446		12.795	101.924	5.826		2.38	0.9	
	s D 2 s	v	x	57.524	40.1154	29.052	55.814	4.55		0.733333				17.324		9.0528	46.414	2.69		2.66	0.9	
	2 5	v	x	63.081	40.1134	23.637	65.832	5.09			1.028137			22.881		10.217	56.432	3.23		9.72	0.9	
					42.0120	23.037	05.052	5.05	114	0.70	1.030024	2			14.0320	10.217	50.432	3.20	J.12	5.72	0.5	
Fall Sp	pawn_H	arvest_11.29	9.17 +)										(

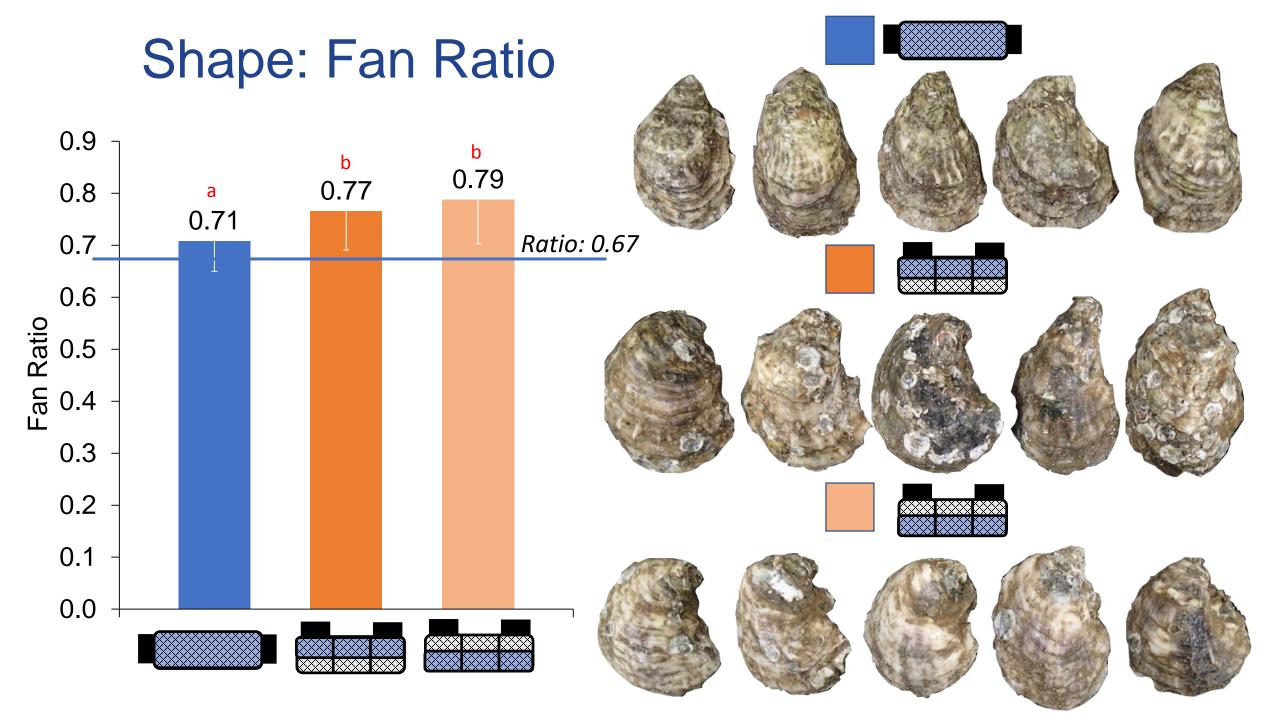
<u>Note</u>: Kruskal-Wallis nonparametric tests were performed using R. Treatments were considered significantly different when $p \le 0.05$. Dunn's test were performed Post-hoc.

Shell Shape

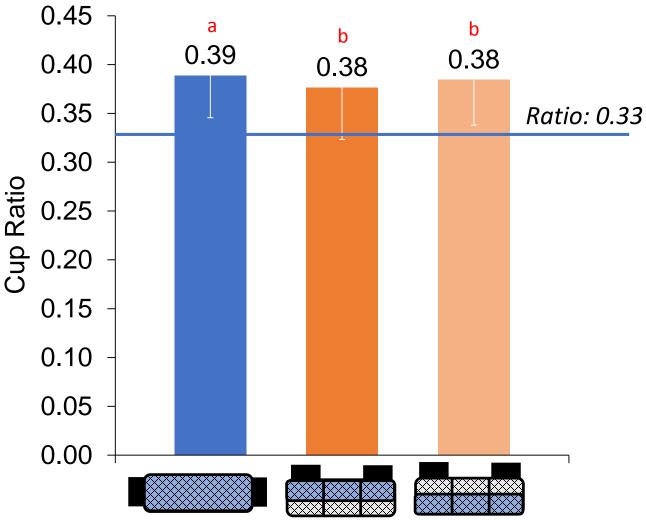
Shell Length (SL)

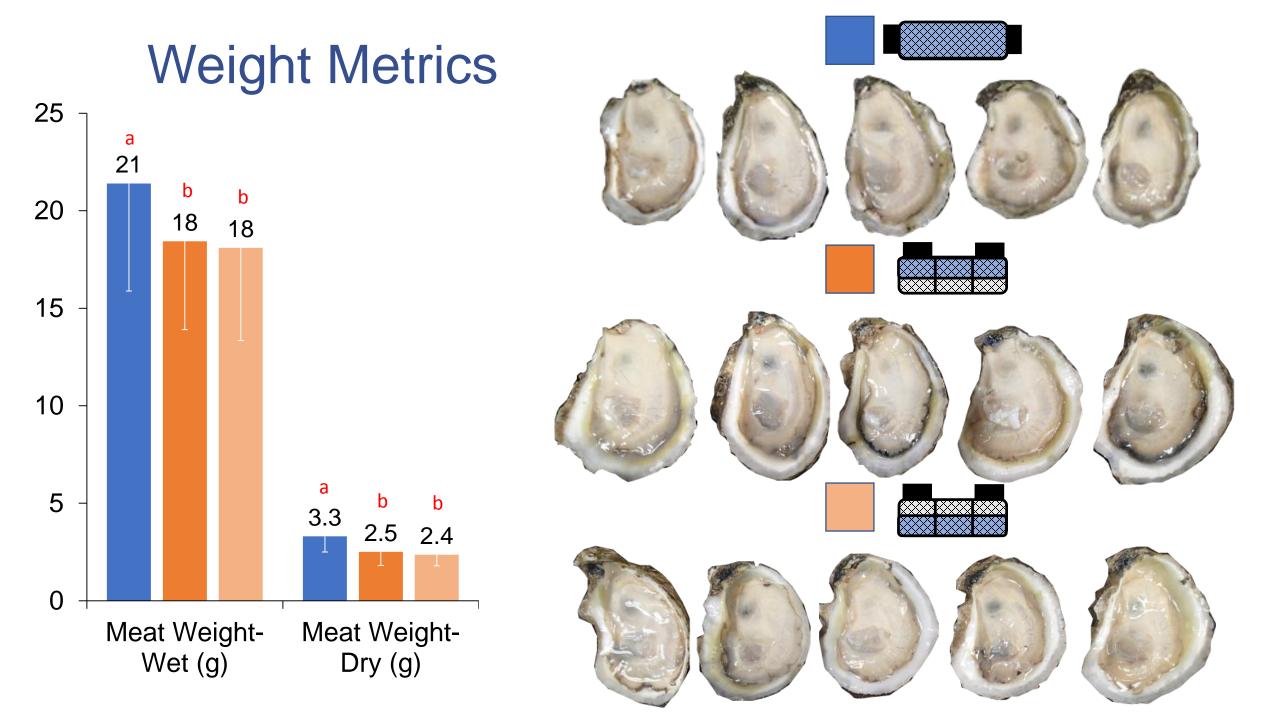
Shell Width (SW)

Preferred Ratio:

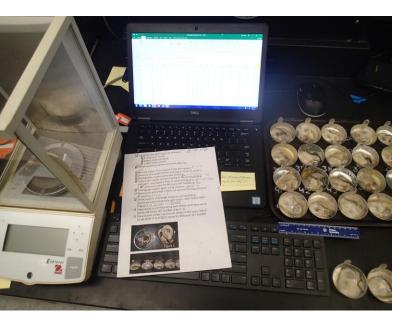

Shell Height (SH) 3

Fan Ratio SL/SH = 2/3 = 0.67

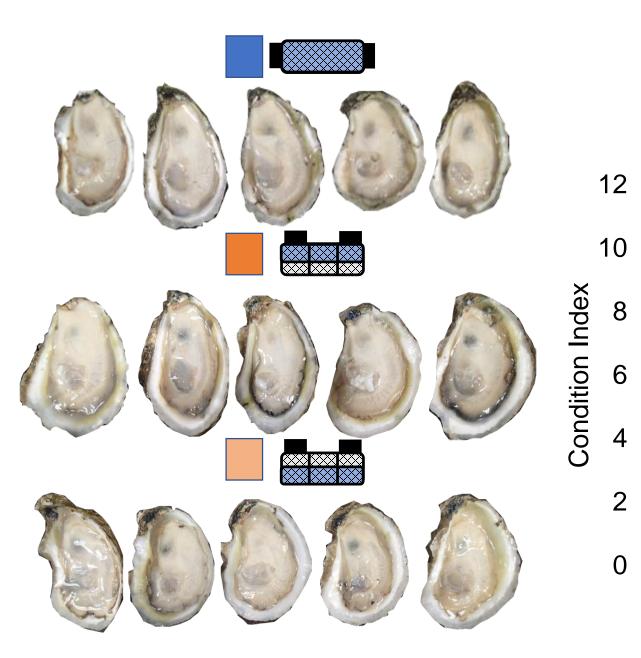

Cup Ratio SW/SH = 1/3 = 0.33



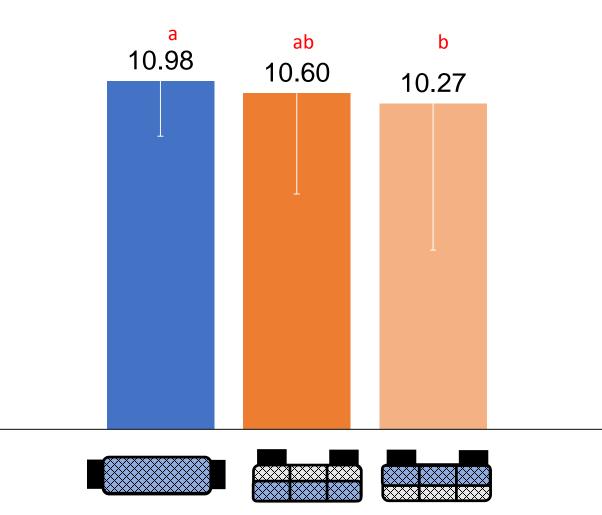
Shape: Cup Ratio

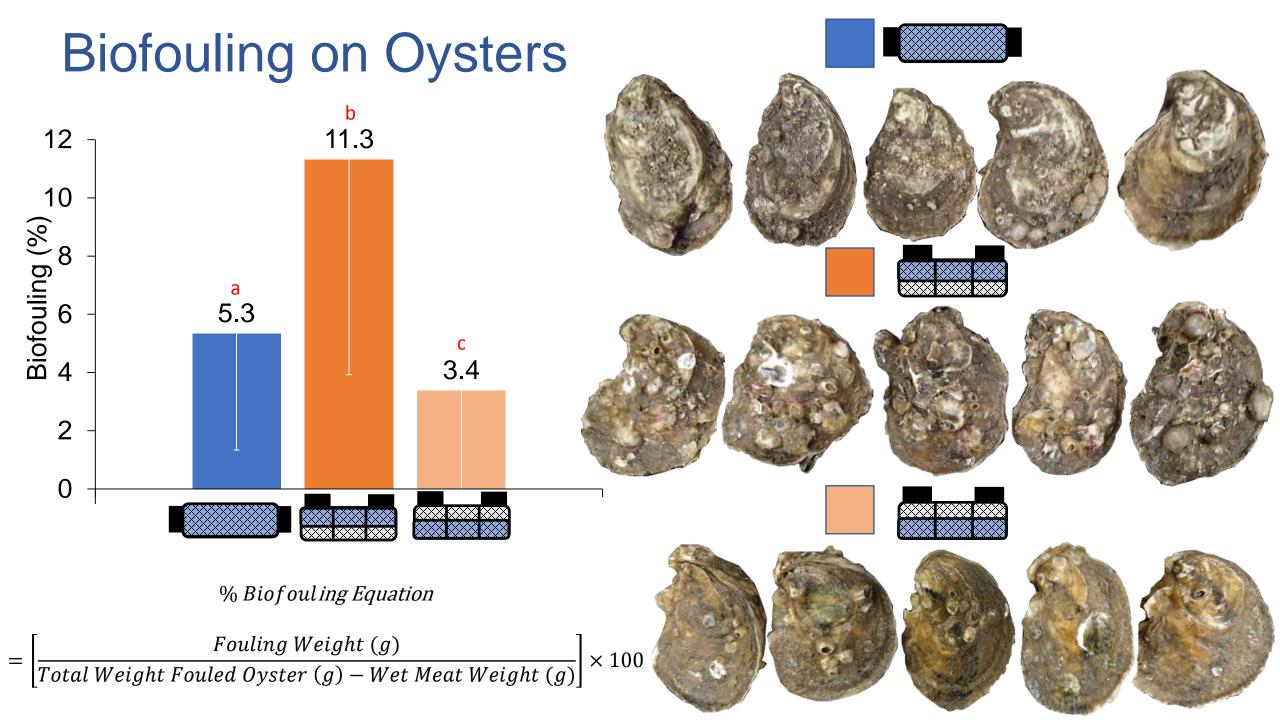


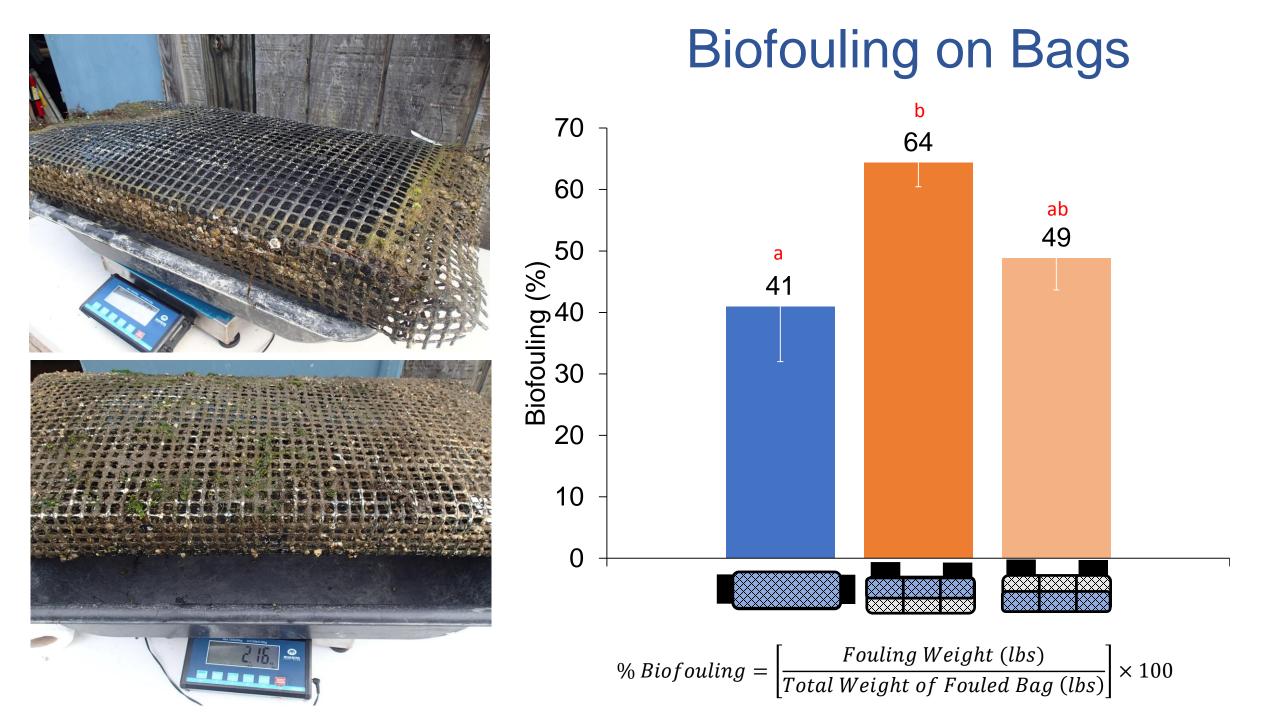
Condition Index

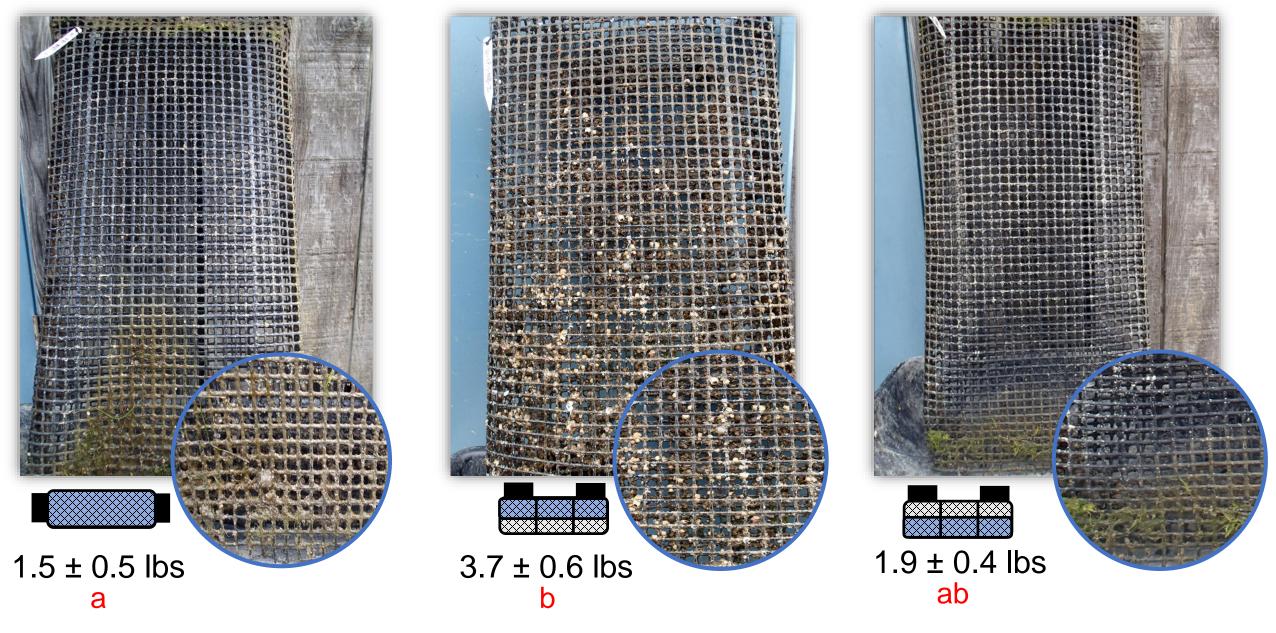

- Weight ratio that describes quality of meat or yield ("fatness")
- Relative value, no 'ideal' condition index range

 $CI = \left[\frac{Dry Meat Weight (g)}{Total Wet Weight (g) - Dry Shell Weight (g)}\right] \times 100$








Condition Index

Biofouling Weights on Bags

- Oyster culture in floating bags and cages had similar:
 - Survival (91 vs 86%)
 - Shell height (84 vs 87 mm)
 - Fan (0.71 vs 0.79) and cup (0.39 vs 0.38) ratios
 - Wet (21 vs 18 g) and dry (3.3 vs 2.4 g) meat weight
 - Condition index (10.98 vs 10.27)

Summary

11/1

Biofouling on oysters and gear was less on floating bags and cage bottom bags.

- Oysters: 3 and 5% versus 11%
- Bag: 41 and 49% versus 64%

Summary

- Commercially acceptable survival and growth
- Floating bags do not need to be flipped back reducing labor and cost by 50%
- Biofouling management practices effective over a winter growout in Florida

ACKNOWLEDGEMENTS

- <u>UF staff and students</u>: Carter Cyr, Rusty Dame, Rod Hunt, and Emma Jablonski
- <u>Funding</u>: USDA Southern Regional Aquaculture Center
- Photo Credit: Alan Youngblood, Gainesville Sun