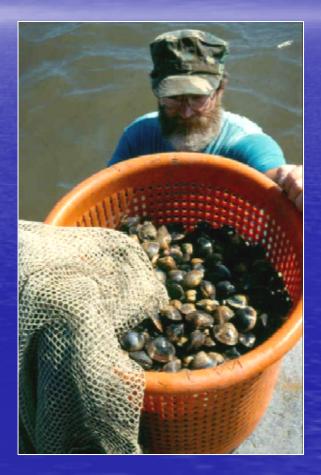
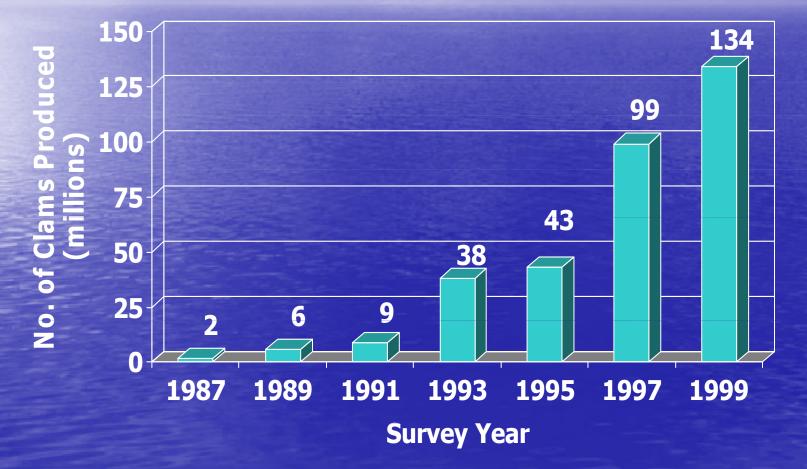
Enhancing Seed Availability for the Hard Clam, Mercenaria mercenaria, Aquaculture Industry Through Application of Remote Setting Techniques

Leslie N. Sturmer University of Florida Cooperative Extension Service *Charles M. Adams* University of Florida Food and Resource Economics Department *John E. Supan* Louisiana State University Office of Sea Grant Development



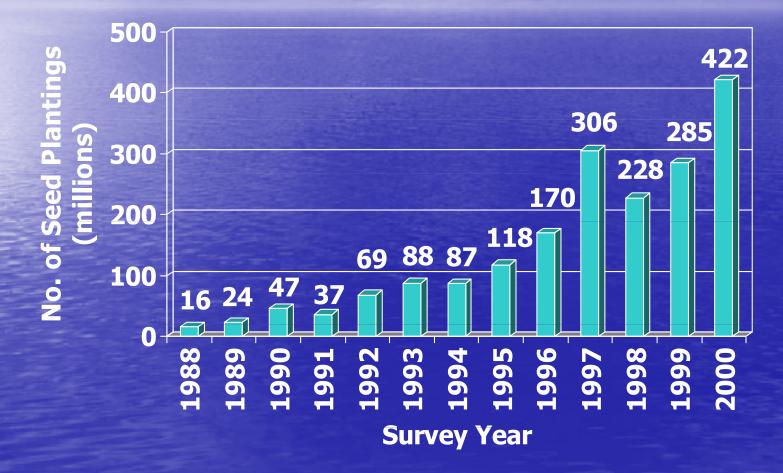
Florida Hard Clam Aquaculture Development

- Industry developed rapidly over past decade due to:
 - Successful job retraining programs for fishermen
 - Excellent leasing program & regulatory framework
 - Almost year-round growing conditions

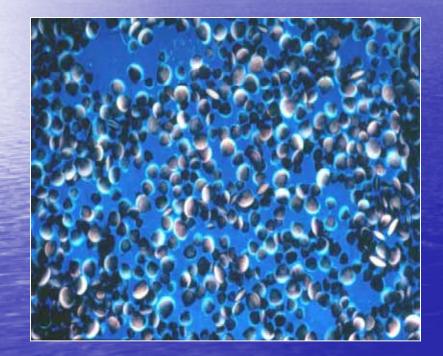


Florida Hard Clam Aquaculture Status

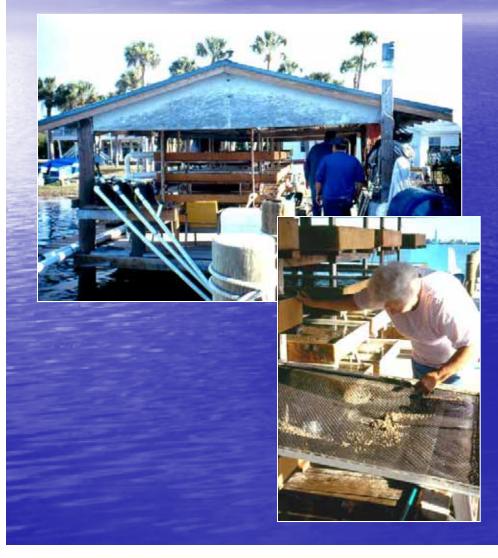
• 450 small-scale growout businesses located on over 1700 acres of state-owned submerged lands \$16M farm gate sales reported for 1999 \$34M economic impact estimated for 1999



Florida Hard Clam Aquaculture Production, 1987 - 1999*


*Source: Florida Aquaculture Surveys, Florida Agricultural Statistics Service, 1988 - 2000

Florida Hard Clam Aquaculture Seed Plantings, 1988 - 2000*


*Source: Florida Aquaculture Surveys, Florida Agricultural Statistics Service, 1990 - 2000

Application of Remote Setting Techniques Rationale

- Adequate seed availability a major industry concern
- Critical seed shortages in recent years coupled with increased prices
- Growers become less dependent upon traditional seed sources
- Greater chance of success by incorporating another step into existing businesses

Florida Land-Based Clam Nurseries Status

- About 90 nurseries operational statewide
- Simple in design and operation
- 1 mm seed obtained from hatcheries nursed to a field plantable size of 4-6 mm SL

Florida Land-Based Clam Nurseries Status

- Lowers initial seed cost
- Added costs of equipment, electricity, and labor
- Increases availability of seed
- Helps alleviate seed shortages

Remote Setting Techniques Status

Established in Pacific Northwest during 1970s - Pacific oyster – Manila clam Competent pediveliger larvae mass produced in hatcheries Shipped to growers for setting at "remote" locations

Application of Remote Setting Techniques Objectives

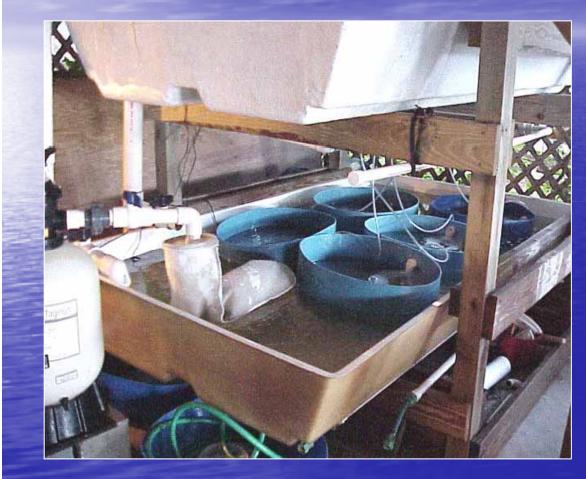
Determine feasibility of transferring remote setting technology from Pacific Northwest molluscan shellfish industry to hard clam aquaculture industry in Florida

Develop and demonstrate technical procedures for remote setting of hard clams

 Compare costs to nursery operation of producing 1 mm clam seed in a remote set facility as opposed to purchasing 1 mm seed from hatchery

Clam Pediveliger Larvae Hatchery Production

 Pediveligers obtained from commercial hatcheries


- 1 out-of-state
- 2 in-state
- Competency determined by
 - Size (150-220 μm)
 - Presence of foot
 - Activity

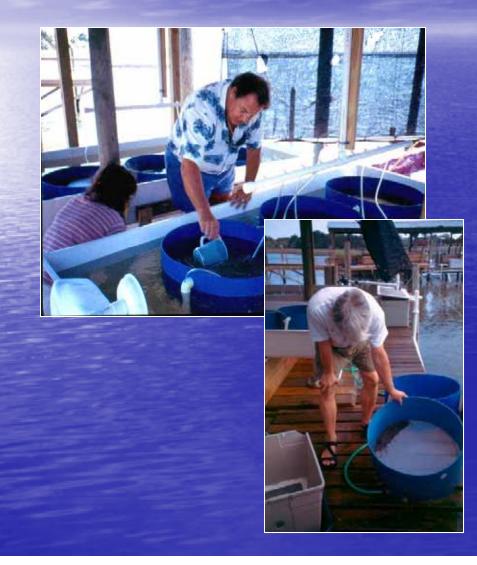
Clam Pediveliger Larvae Preparation and Shipment

- Screened on 130 µm sieve
- Volumetrically subsampled and counted
- Placed on shipping material
 - moist coffee filters
 - paper towels
- Refrigerated (45°F) for 2-3 hours
- Packaged in shipping box with gel packs
 Shipped overpight
- Shipped overnight

Remote Setting Facility

Components: – Fiberglass tank • 250 gallons Sand filter – Bag filters • 25 µm • 100 µm - Aeration Airlift pumps

Remote Setting Facility


Downweller sizes (24" diameter):

- 120 µm
- 200 µm
- 425 µm
- 710 µm
- Sieve sizes:
 - 230 µm
 - 500 µm
 - 780 µm

Remote Setting Field Trials Florida Locations

Remote Setting Field Trials Procedures

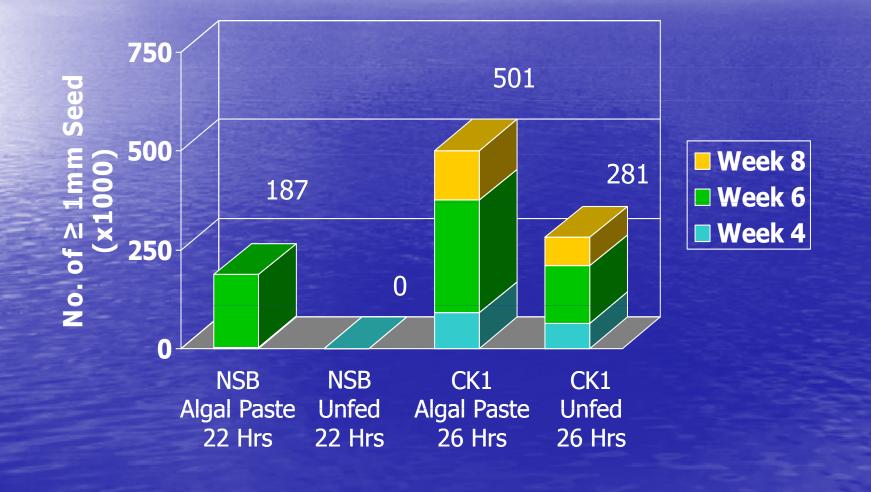
Stocking:

- 3M PVs per tank, or 1M per weller (350/cm² of screen)
- Flow rates:
 - Water: 2-5 gpm
 - Airlifts: 1-2 lpm
- Cleaning:
 - Seed and tank: daily
 - Backflush filter: 1-2x daily
 - Change bag filters: 1-2x daily
 - Wellers: 2x weekly
- Sieving:
 - Weekly

Remote Setting Field Trials Measurements

Water Quality:

- Temperature: daily
- Salinity: daily
- Chlorophyll <u>a</u>: 2x weekly
- Sieving:
 - Volume by sizes: weekly
 - Estimate of seed <a>780 µm size: weekly
- Operation & Maintenance:
 Man-hours


Remote Setting Field Trials Spring 2000

				gement
Site	Site Dates		Ship	Feed
			(hrs)	
NCD	May 12 –	11	22	Algal Paste
NSB	Jun 22	41		None
	May 12 –	57_	26	Algal Paste
CK1	Jul 8	57	26	None

Remote Setting Field Trials Water Quality – Spring 2000

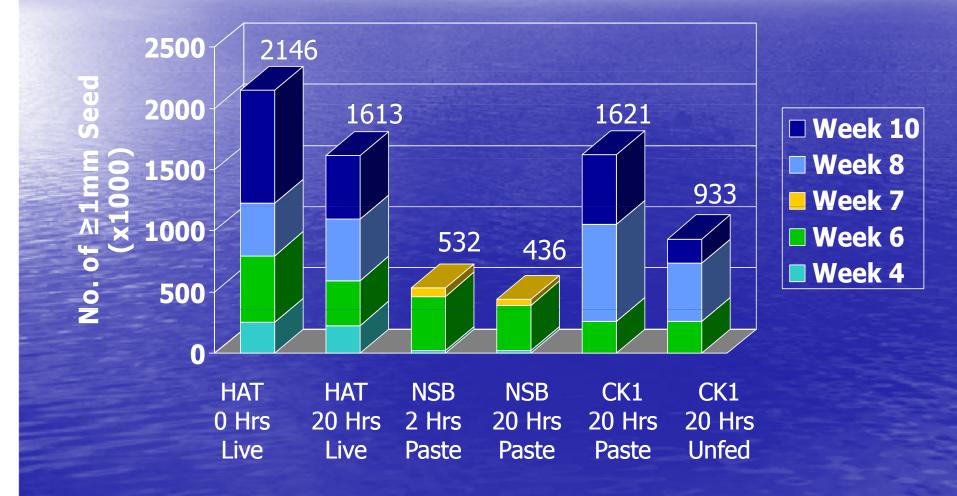
Site	Min Temp	Max Temp	Salinity	Chlor <u>a</u>
	(°F)	(°F)	(ppt)	(µg/l)
NSB	76.5 ± 2.3	85.3 ± 2.9	35.2 ± 1.7	5.7 ± 3.8
CK1	76.7 ± 2.6	81.7 ± 2.6	29.3 ± 2.9	11.7 ± 6.0

Remote Setting Field Trials Sieve Results – Spring 2000

Remote Setting Field Trials Production Results - Spring 2000

	Ma	nagement	Survival to	≥1mm Seed
	Ship	Feed	1 st Sieve*	Production
	(hrs)		(%)	(%)
NSB	22	Algal Paste	47	6
NSD		None	39	0
CV1	26	Algal Paste	77	17
CK1	20	None	50	9

*NSB = Day 21 CK1 = Day 28

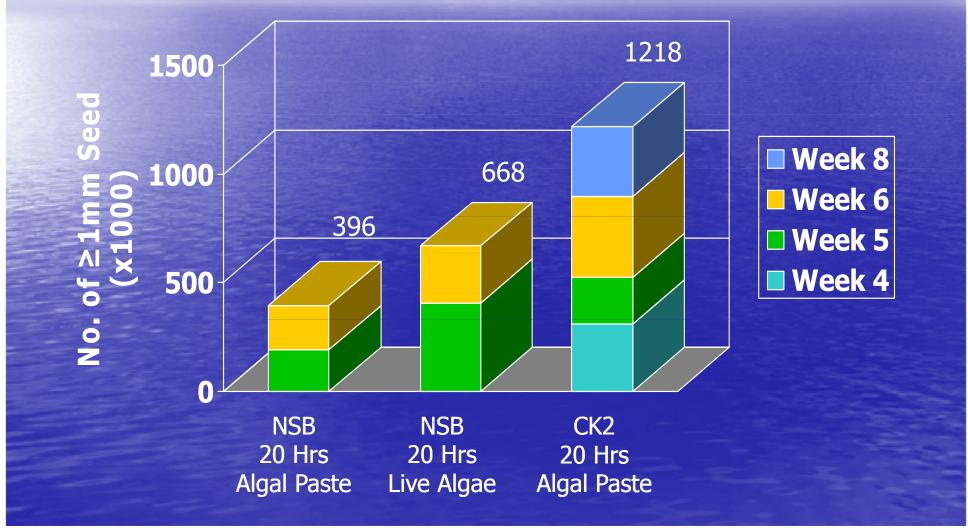

Remote Setting Field Trials Spring 2001

			Management		
Site	Dates	Days	Ship	Feed	
			(hrs)		
HAT	Apr25–Jul5	72	0		
ΠΑΙ	Apr26–Jul5	71	20	Live Algae	
NSB	Apr26–Jun14	50	2	Algal Paste	
NOD	Apr26–Jun14	49	20	Alyal Paste	
CK1		72	20	Algal Paste	
	Apr26–Jul6		20	None	

Remote Setting Field Trials Water Quality - Spring 2001

Site	Min Temp (°F)	Max Temp (°F)	Salinity (ppt)	Chlor <u>a</u> (µg/l)
NSB	71.9 ± 1.8	77.4 ± 5.7	37.6 ± 2.5	8.4 ± 6.0
CK1	75.5 ± 5.7	83.4 ± 5.3	28.0 ± 2.3	9.4 ± 3.0

Remote Setting Field Trials Sieve Results - Spring 2001


Remote Setting Field Trials Production Results - Spring 2001

Site	Mar Ship (hrs)	lagement Feed	Survival to 1 st Sieve* (%)	≥1mm Seed Production (%)
HAT	0	Live Algae		71
	20	LIVE AIYAE		54
NSB	2	Algal	67	18
NSD	20	Paste	50	15
		Algal	65	54
CK1	20	Paste		
*NSB,	$CK1 = D_{16}$	ay None	58	25

Remote Setting Field Trials Fall 2001

			Management		
Site	Dates	Days	Ship	Feed	
			(hrs)		
			20	Algal	
NSB	Sep18 – Oct15	37		Paste	
			20	Live Algae	
CK2	Sep18 – Nov3	56	20	Algal	
				Paste	

Remote Setting Field Trials Sieve Results - Fall 2001

Remote Setting Field Trials Production Results - Fall 2001

	Management		Survival to	≥1mm Seed
Site	Ship	Feed	1 st Sieve*	Production
	(hrs)		(%)	(%)
NSB	20	Algal Paste	70	13
NSD	20	Live Algae	83	22
CK2	20	Algal Paste	88	41
*NSB = CK2 =	Day 23 Day 12			

Remote Setting Field Trials Water Quality – Fall 2001

Site	Min Temp (°F)	Max Temp (°F)	Salinity (ppt)	Chlor <u>a</u> (µg/l)
NSB	73.7 ± 3.4	80.1 ± 4.0	26.6 ± 1.6	
CK2	69.3 ± 6.0	78.7 ± 6.1	27.4 ± 2.31	15.2 ± 5.4

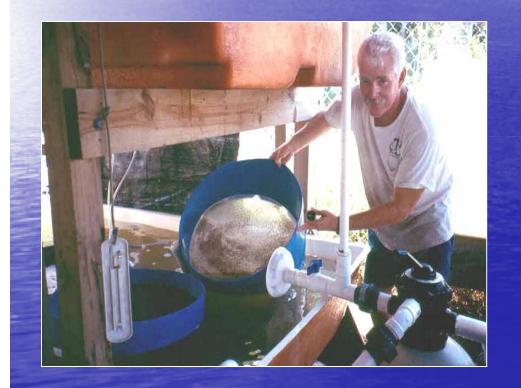
Remote Setting Technology Economic Analysis

 Production assumptions for remote setting system

- One-tank system
- Two runs per year
- Stocking density
 ~3,000,000 per run
- Supplemental feeding with algal paste
- 37% to 1 mm size per run

Initial Capital Investment Requirements One-Tank Remote Setting System

Item	Cost
Fiberglass tank (250 gal) w/ support & plumbing	\$475
Sand filter	\$200
Bag filters and adapter	\$122
Air compressor w/ plumbing & accessories	\$360
Wellers	\$1,020
Sieves	\$120
Dissecting scope	\$400
Refractometer	\$165
Miscellaneous supplies	\$145
TOTAL	\$3,007


One & Two Annual Runs Operating Costs One-Tank Remote Setting System

			Runs per Year	
Item	Units/Run	\$/Unit	One	Two
Algae paste	1 L	\$145/L	\$145	\$290
Filter sand	100 lbs	\$5 / 50 lbs	\$10	\$20
Filter gravel	25 lbs	\$5 / 50 lbs	\$3	\$6
Air valves	15	\$1 ea	\$15	\$30
Air stones	50	\$0.55 ea	\$28	\$56
Airline tubing	100' coil	\$13/coil	\$13	\$26
TOTAL	\$214	\$428		

Cost Budget One-Tank Remote Setting System

			Runs po	er Year
Item	Units/Run	\$/Unit	One	Two
Larvae	3 million	\$125/million	\$375	\$750
Supplies			\$214	\$428
Labor	104 hrs	\$5.15/hr	\$536	\$1,072
Electricity	403 KwH	\$0.085/KwH	\$34	\$68
Depreciation			\$938	\$938
TOTAL COST	\$2,097	\$3,256		
1 mm seed produce	1,110K	2,220K		
Cost / 1000 seed (v	\$1.88	\$1.47		
Cost / 1000 seed (v	\$1.41	\$0.97		
Cost / 1000 seed to	o purchase		\$3.00	\$3.00

Application of Remote Setting Techniques Summary

- Hard clam pediveliger larvae refrigerated and shipped up to 26 hours without detrimental effects
- Setting success not fully determined, but survival estimated at first sieve exceeded 50%, ranging 53 - 80% per rearing trial
- Production to a 1 mm seed size averaged 20%, ranging 8 - 28% per rearing trial

Application of Remote Setting Techniques Summary

- Variability of results due to seed source, site location, and season
- Addition of food (cultured algae or algal paste) necessary to achieve adequate survival to 1 mm seed size

 Technical procedures for remote setting hard clams were developed and are not beyond the capabilities of most nursery operators

Application of Remote Setting Techniques Summary

Potential cost savings based on \$3.00/1,000 1 mm seed:

- One run per year
 - 37% with labor
 - 53% without labor
- Two runs per year
 - 51% with labor
 - 67% without labor

 Remote setting of hard clams may be viable alternative from a cost perspective

Acknowledgements

Industry Cooperators - Hatcheries: Sea-Ag, Vero Beach, FL Sea Perfect, Charleston, SC Southern Sea Cross Farms, Merritt Island, FL Industry Cooperators - Nurseries: Big 'T' Clam Farm, Cedar Key, FL Cedar Creek Shellfish Farms, New Smyrna Beach, FL

– Cedar Key Raceways, Cedar Key, FL

Funded By:

