Comparison of Oyster Stocking Densities for Floating Bag Culture in Florida

Natalie Simon, Leslie Sturmer, Carter Cyr, Reggie Markham

University of Florida / IFAS Shellfish Aquaculture Extension Cedar Key, FL

Oyster Stocking Density Comparison

OBJECTIVES

- 1) Document production performance of oysters
- 2) Evaluate stocking densities
 - a) 125, 150, 175 per bag
 - b) 175, 200, 225, 250 per bag
- 3) Examine effects of biofouling control methods

Shellfish Aquaculture Use Zones, Cedar Key, Florida Levy County Suwannee Reef Site # 01 Lone Cabbage Reef Site # 02 Gulf of Mexico Corrigan's Reef Site # 03 Aquaculture Use Zone

2

C:\GIS\Shellfish\bigbend\maps\cedarkey lease sha

Location of Field Trials

- Gulf of Mexico off Cedar Key, FL
- Experimental lease within a commercial aquaculture use zone

Cedar Key, FL

Field Trial 1: October 2016—April 2017

From Spawn to Harvest – 12 months

Timeframe:

Stocking Info & Biofouling Control

• Stocking size:

Diploids: 51 mm (2 inches) SH
Triploids: 54 mm (2 inches) SH

- Stocking density: 120, 150, 175 oysters per bag
- 14 mm Vexar bags
- 4.5-inch square floats placed on top
- Weekly flipping 24 hr aerial drying

Temperatures, October 2016 - April 2017

- Shell Metrics
- Weight Metrics
 - Total
 - Meat (wet)
 - Meat (dry)
- Condition Index
- Survival
- Biofouling Weight
 - —On bags
 - -On oysters
- Bag Metrics
 - Oyster volume
 - Oyster height

Ready

- Bag height
- Labor Hours

Variables Measured: Variables Reporting

nsert	Pag	ge Layout	Form <u>ulas</u>	Data	Review	View	Help A	CROBAT	♀ Tell <u>m</u> e	e what yo <u>u v</u>	vant to do											
				• = _	- N2		-					ER F						Ξ	AutoSum 👻	A- (
6	Calibri		* 11 * A	A — =	= **	∎® Wra	ip Text	Gener	al	*	I ≠		Normal	Bad		-				Z¥ 🔪	9	
er	ΒI	<u>U</u> - E	🗉 - 🛛 🕹 - 📕	↓ - ≡ ≡		🗏 🗮 Mer	rge & Cente	r - \$ -	% * 5	.0 .00 Co	nditional F	ormat as	Good	Neut	ral	Tinser	Delete Fo	rmat 🧹	Clear ≠	Sort & Fin	d &	
5		For	nt	G.	Ali	anment		G	Number	- For	matting .	Table -	Styles				Cells		Edit	ina see	ECL ·	
						2																
\times	\sim	f _x	50.1378																			
	С	D	E	F	G	н	Ι	J	К	L	м	N	0	Р	Q	R	S	Т	U	V	w	
FI	oat Sha	ar Float F	Posi Paint	SH (mm)	SL (mm)	SW (mm)	TW (g)	MW (g)	Alive	Survival	AsinSqrt	S Dead	*Notes	Delta SH (Delta SL (r	Delta SW	Delta TW	Delta MW	Bag Weigl	Float Wei	Initial Bag	Delt
3 s		v	n	68.22	47.5186	26.1132	89.28776	8.23	96	0.64	0.927295	j 3	2	21.416	16.06465	9.998	73.64776	5.346	2.88	2.68	0.9	
3 s		v	n	71.4412	50.2852	27.0186	109.124	9.31	118	0.786667	1.090682	2 1	9	24.6372	18.83125	10.9034	93.484	6.426	4.9	2.68	0.9	
3 s		v	n	66.5326	46.1636	26.112	88.036	7.37	*77 BAG R	IPPED		16*	BAG RIPPE	19.7286	14.70965	9.9968	72.396	4.486	5.24	2.48	0.88	
3 s		v	n	74.3306	50.4908	29.5276	113.448	7.26	91	0.606667	0.892891	. 1	7	27.5266	19.03685	13.4124	97.808	4.376	6.54	2.9	0.9	
3 s		V	f	77.0312	52.4636	29.085	114.394	10.7	111	0.74	1.035726	j 2	4	30.2272	21.00965	12.9698	98.754	7.816	4.9	2.66	0.9	
3 s		V	f	72.6154	51.2198	26.5378	129.74	8.79	107	0.713333	1.0058	3 1	9	25.8114	19.76585	10.4226	114.1	5.906	6.26	2.4	0.92	
3 s		V	f	74.048	49.3718	28.6388	108.498	6.46	97	0.646667	0.934254	2	2	27.244	17.91785	12.5236	92.858	3.576	8.04	4.62 (wate	0.9	
3 s		V	f	73.0016	50.1378	28.1334	126.538	7.21	94	0.626667	0.91346	j 2	6	26.1976	18.68385	12.0182	110.898	4.326	9.94	2.98	0.9	
3 s		V	х	77.8254	52.73	27.8364	122.496	9.24	113	0.753333	1.051055	5 2	7	31.0214	21.27605	11.7212	106.856	6.356	6.8	2.62	0.9	
3 s		V	X							0											0.9	
3 s		V	Х	78.53	51.8604	28.149	117.582	6.2	126	0.84	1.159279) 1	0	31.726	20.40645	12.0338	101.942	3.316	11.56	4.84	0.9	
3 s		V	Х	74.455	49.9828	27.53	116.46	7.054545	112	0.746667	1.043357	/ 1	7	27.651	18.52885	11.4148	100.82	4.170545	8.72	3.86	0.9	
3 s		1	n	69.0016	47.422	27.835	89.734	7.73	124	0.826667	1.141388	3 2	0	22.1976	15.96805	11.7198	74.094	4.846	1.08	2.04	0.9	
3 s		1	n	70.4224	49.4662	26.2092	109.62	7.46	120	0.8	1.107149	2	3	23.6184	18.01225	10.094	93.98	4.576	1.4	2.86	0.9	
3 5			n	68.6534	50.3884	27.9458	94.048	6.745455	120	0.8	1.107149	2	2	21.8494	18.93445	11.8306	78.408	3.861455	1.2	1.94	0.9	
3 s		1	n	77.0662	56.0048	29.4302	130.794	8.5	121	0.806667	1.115535	5 1	1	30.2622	24.55085	13.315	115.154	5.616	1.32	1.96	0.9	
35			f	71.2168	50.0616	28.8732	101.224	8.52	124	0.826667	1.141388	3 1	8	24.4128	18.60765	12.758	85.584	5.636	1.26	2.18	0.9	
35			t .	65.1356	45.7702	27.724	101.444	7.81	117	0.78	1.082591	. 2	3	18.3316	14.31625	11.6088	85.804	4.926	1	1.9	0.9	
35		1	1	70.0070	57.0050	20.5	100.00	0.07	*24	0.0000077	1.000000	~2	BAG REIPP	YED MANY	LOST	10 40 40	110.00	C 405	1.6	2.34	0.9	
35		1	T	/9.82/2	57.2958	29.6	132.26	9.37	136	0.906667	1.260328		8 7	33.0232	25.84185	13.4848	116.62	6.486	1.38	2.12	0.88	
35		1	X	70 50400	43.7852	20,4046	140 5020	8.08	117	0.713333	1.0058	3	0	10.0/98	12.33125	14 76745	122 0520	3.790	1.08	1.88	0.9	
25		1	X	75.054408	53,907/0	20.88205	120 0460	9.9	11/	0.78	1.082391		0	32.78008	24.31381	12 170/45	112 2050	/.010	1.14	2.04	0.9	
2 5		1	X	24 10950	50 25206	29.2930/	152 1102	1.72	119	0.755555	1.074507	, <u>1</u>	5	27 20550	21.33311	12 22206	127 //702	4.030	1.72	0.7 2.9 (wator	0.9	
3 5 3 b		h	×	78 2510	51 67/19	20.33010	108 5367	9.43	110	0.775333	1.074387		7	21 ///70	20.73031	11 7052	92 89672	6 506	1.20	2.0 (Water 2.02	0.9	
3 b		h	×	77 6576	55 1182	30 2904	129 55/	9.55	113	0.755555	1.051055	2	0	30.8526	23 66485	14 1752	113 91/	6.696	3.4	2.02	0.9	
3 b		h	x	77 2486	55,1552	28,9102	127.004	0 05	114	0.70	1.082591	1	5 5 survival or	30.4446	23.70125	12 795	112.514	7 046	1 26	2.4	0.00	
3 h		h	x	78 506	53 4156	29.052	117 564	8 71	120	0.78	1 107149		5	31 702	21 96165	12 9368	101 924	5 826	4.20	2.50	0.9	
25		v	x	57.524	40.1154	22,0002	55.814	4.55	110	0.733333	1.028157	7 1	9	17.324	12.1354	9.0528	46.414	2,69	7.06	2.66	0.9	
25		v	x	63.081	42.8126	23.637	65.832	5.09	114	0,76	1.058824	. 2	0	22.881	14.8326	10.217	56.432	3.23	9,12	9,72	0.9	
-		-				/	10.002	5.05		0.70	2.13002	-	-		2		2 21 102	0.20		5.1.2		

Statistical analyses performed on growth of each metric (a=0.05)

Statistical analyses performed on growth of each metric (α =0.05)

Trial 1: Stocking Density Results

Trial 1: Biofouling on Oysters

Trial 1: Biofouling on Oysters at Harvest

98% of oysters were saleable after culling

Field Trial 2: October 2018 - June 2019

Spawn

Stocking Info & Biofouling Control

- Stock size: 41 mm (1.6 inches) SH
- Stocking density: 175, 200, 225, 250 oysters per bag
- 14 mm Vexar bags
- 4.5-inch square floats placed on sides of bags
- Weekly flipping does not require flipping back or "unflipping"

Temperatures, October 2018 - June 2019

Trial 2: Stocking Density Results

Oyster Shell Shape

3

Shell Length (SL)

Shell Width (SW)

Shell Height (SH) Preferred Ratio:

Fan Ratio SL/SH = 2/3 = 0.67

Cup Ratio SW/SH = 1/3 = 0.33

Trial 2: Weight Measurements

175-1

125-1

Trial 2: Biofouling on Oysters

Trial 2: Biofouling on Bags

Stocking Density:

Summary: Production

- No differences in growth and survival of diploid and triploid oysters cultured at densities of 125, 150 and 175/bag
- Higher shell height and meat weight of triploid oysters cultured at densities of 225 and 250/bag
- Growth (4.5 mm/month) of triploid oysters was similar for both trials
- Survival (89-91%) of triploid oysters was higher in Trial 1 compared to Trial 2 (81-84%)

- Biofouling on oysters and gear was low and similar across stocking densities
- Bags with floats attached to sides do not need to be flipped back reducing labor and costs by 50%
- Biofouling management effective over a "Winter" growout period in Florida

Summary

- Results suggest growers may stock as high as 250 oysters per final growout bag
- BUT increased bag weight
 - Places added tension to lines
 - Possibly reduces effectiveness of aerial drying
 - Can be problematic during inclement weather conditions and storms