Planting Your First Crop

Bill Walton Auburn University Shellfish Lab

Seed Advice

- Buy from more than one supplier and at different points in the season
- Know the spawn date
- Check counts right away
- Buy a bit more than you need to allow for loss
- Do not overbuy and get jammed up
- Be willing to discard extra
- Follow the regulations

 See Gef Flimlin's 'How to buy clam seed ... without getting shucked'

Nursery Options for Seed

Nursery Stage

- Can get seed as small as retained on 0.75 mm mesh
- Can raise them at fairly high densities
- Very vulnerable to predators or loss due to sloppy handling
- For sake of discussion, nursery stage ends when seed are retained on 12 mm mesh (R12) and begin growout
 - ('pepper flakes' to 'quarters')

Nursery Options for Oyster Seed

- Upwellers
 - Very high densities of seed
 - Rely on forced high flow of seawater usually by a pump
 - Can get seed as small as 1 mm (retained on 0.75 m)

- Field containers/bags/baskets
 - Lower densities
 - Rely on passive flow of seawater
 - Can get seed as small as R2

OR purchase larger seed from a nursery operation

Upwellers

- Either above the water line (usually land-based) or in the water (floating upwellers)
 - Floating are often called FLUPSYs

Production in Upwellers

- With grading throughout season, can produce ~1 million seed retained on 12 mm mesh (R12)
- Cleaning seed and silos regularly
- Runs on axial flow pump so relatively low electric costs
 - High flow is key
 - Ideally 100 gpm per silo
- Purchased turn key ~\$12,000

Upwellers above the water line

- Upweller silos can be built relatively inexpensively
- Still require regular maintenance of seed and silos

Upwellers above the water line

- Upwellers can also be put indoors/shelter
- Can be built out of fiberglass
- Note that silo shape varies

Bottle Nurseries

Upweller tending

- All upwellers have water (and food and oxygen) come up and go past the seed
- Require frequent tending since seed are at such high density
- Personally, I washed my silos
 & seed at least every other day

Upweller Videos

- Construction of 'Supan Power Silos' -<u>https://www.youtube.com/watch?v=wcd6m6c51</u> <u>Gg</u>
- Paddlewheel floating upweller -<u>https://www.youtube.com/watch?v=z5oDgQG2I</u> <u>74</u>

Field nursery

- Can opt to raise seed in the field in fine mesh bags
- Caveats!
 - Small seed are easy to lose out of even small holes
 - Fouling is much faster on fine mesh

For field nursery, routinely grading and moving to new mesh

- For a May 1 spawn, we typically have seed that retain on 2 mm mesh by June 15th or so (6 wks)
- These go into a 1.5 mm mesh 'sleeve' @ 10,000 seed/sleeve using a floating flippable cage (e.g., OysterGro)
- Works with any container system though (e.g., ALS)

Those seed get deployed at your field site

Two weeks later ...

After about two weeks (July 1), the seed will mostly retain on a 4.5 mm mesh and go in a 2 ml bag @ 5,000 seed/bag

Two more weeks later ...

- After about two weeks (July 15), the seed will mostly retain on a 6 mm mesh and go in a 4.5 ml bag @ 2,500 seed/bag
- Up to this point, zero maintenance between gradings and re-baggings

Splitting and Desiccation

- After about 2 more weeks (August 1), seed will have gotten larger, and can split the densities in half, so there are only 1,250 seed/bag
- At this point, we begin weekly desiccation of the seed

To grow-out

- By August 15-30, seed will retain on a 12 mm mesh, so these are put into 9.5 ml bags which can be used through growout if properly maintained
- Have decision if want to get the R12 seed at final grow-out density (150/bag) or keep them at higher densities (no more than 1,250 and can't be kept there long)

For every 100,000 oyster seed

June 15th – Need <u>10</u> 1.5 ml bags, and 2 6-pack floating cages

July 1 – Need 20 2 ml bags and 2 more 6-pack floating cages (4 total)

July 15 – Need <u>40</u> 4.5 ml bags and 3 more 6pack floating cages (7 total)

Aug. 1 – Need <u>40 more</u> 4.5 ml bags (80 total) and 10 more 6-pack floating cages (14 total)

[~\$500-\$600 worth of bags, or \$5,000-\$6,000 of bags for 1 million seed]

For every 100,000 oyster seed

By Aug. 15th – If going to final grow-out density (and assuming 96% survival/retention*), need 640 9.5 ml bags and 107 6-pack floating cages to get these seed to 150/bag (or 900/cage)

*Not likely but want to be sure have enough if survival is this high

Additional considerations for field nursery

- Total time tending seed is approximately 2-2.5 months
- Minimal maintenance between gradings
- Does require power washing bags after use

Comparing growth and survival

- Highly variable
 - Personally, I have seen sites where field nurseries outperform upwellers and other sites where upwellers outperform field nurseries
 - Differences in handling?
 - Differences in food in water?

 In my opinion, either method can give you very high growth and survival

Which option is for you?

• Upwellers

- + Convenient
- + Can control flow even in low flow environment
- Power bill
- Need to get upweller moved for storms
- Can be expensive to build

- Field nursery
 - + No power bill
 - + Keeping an eye on your site
 - + Only periodic maintenance
 - Multiple bag sizes needed

What are the 'right' grow-out densities?

- Numbers may vary
 - Longline baskets often 75-100
 - Vexar-style bags often 150-200
 - Varies by growers, sites
 - Consider container volumes
- Rule of thumb is that if container is more than half full when turned on side, it is time to split
- Grow-out densities may be affected by wave exposure
- Density affects growth rate, survival, consistency, etc.
 - Find what works best for your gear at your site

- Can be done by hand or by hand across screen
- Recommend a mechanical grader if crop is 100,000 or more
- Sort like sizes together
- Opportunity to split stocking densities as well
- Opportunity to check inventory

Grading and Splitting

Inventory

How many oysters do you have?

What size are they?

Where are they?

How do different batches perform?

What is the value of my crop right now?

Traditional Methods

- Whiteboard
- Notebook
- Excel (with some modern twists)
- Color-coded tags
- Memory

New Options?

- Apps/software
- RFID?
- GIS packages

Inventory Management

Second Crop and Onward

- Consider multiple orders of seed per year
 - Spread out harvest across year
 - Diversify
- Start to get sense of space/gear needs for seed

Questions or comments?

- @doctor_oyster
- walton@vims.edu