Oyster Triploid-tetraploid Technology

Huiping Yang

School of Forest, Fisheries and Geomatics Sciences
IFAS/University of Florida
7922 NW 71st street, Gainesville, Florida 32653
Email: huipingyang@ufl.edu; Phone: 352-294-0671, Cell: 225-936-5549

What are Triploids and Tetraploids?

Triploid (3N): Three set of chromosomes (DNAs)

Tetraploid (4N): Four set of chromosomes (DNAs)

Diploid (2N): Two sets of chromosomes

(most animals are diploids)

Haploid (N): One set of chromosomes

(sperm or eggs)

Why Triploids in oyster aquaculture?

Fast growth

In Florida, 8 months to adult size from seed May also alleviate the fouling on oyster shells Better meat-quality

Year-round harvest, especially in hot summer No environmental pressure

Diploids
Showing the full-developed gonad

Triploids
Showing the undeveloped gonads

One-year old siblings April 19, 2018

Triploid oysters are NOT GMO organisms

same as the Seedless watermelon, banana, or grape

How triploid oysters are produced?

Tetraploid breeding stock is the KEY for this technology

How to produce tetraploid breeding stock?

Triploid Production

by (2n♀ x 2n♂) plus inhibition of polar body 1 (PB1) or polar body 2 (PB2)

Tetraploid Founder Production

by (3n♀ x 2n♂) plus PB 1 inhibition produce 4n Individuals
Then build up the founders

Tetraploid Number Expansion

(3n♀ x 2n♂) plus PB 1 inhibition (2n♀ x 4n♂) plus PB 2 inhibition (4n♀ x 4n♂) with no PB inhibition

Step 1. Chemically induced triploid production

Step 2. 3N females -> Tetraploid Induction

Putative 3N oysters

Sex determination

Ploidy determination

Female 3N for 4N production

Challenges for tetraploid production

- 1. Limited availability of oocytes from 3N females
 - 1) Triploid female occurrence:
 - 1.5% (Yang, unpublished data)
 - 2) Low fecundity:
 - 100 -- 1.6 million per 3N female (Yang, 2018)
- 2. Poor survival of induced putative tetraploid larvae
 - 1) Pacific oysters (Guo and Allen 1994)
 0 in two replicates, and 0.0739% in 3rd replicate
 - 2) Eastern oysters: Experiment at UF 2018&2019: 100-200 survived to spat but lost in a storm

Application of triploid-tetraploid technology

Name	Scientific name	Aquaculture (2014)		Triploid-tetraploid
		tones	×1000 US\$	Technology
Pacific oyster	Crassostrea gigas (C. angulate)	625,925	1,343,591	50% production in the USMajority in France2.3 billion seed in China 201815% in Australia
Eastern oyster	C. virginica	98,193	108,660	100% in Chesapeake Bay Majority in the Gulf region
Jinjiang oyster	C. hongkongensis C. ariakensis	4,352,694	2,586,029	No data
Sydney oyster	Saccostrea commercialis			No data

